## Manuscript Details

Manuscript number<br>Title<br>OPHTHA_2019_471_R1<br>Diagnostic Accuracy of Technology-based Eye Care Services (TECS): The TECS Compare Trial Part I<br>Article type<br>Full Length Article


#### Abstract

Purpose Ophthalmologic telemedicine has the ability to provide eye care for patients remotely and many countries have utilized screening tele-ophthalmology programs for several years. One such initiative at the Veteran Affairs' (VA) Healthcare System is Technology-based Eye Care Services (TECS). TECS services are located in primary care clinics and provide basic eye care including vision, refraction, and retinal photography. Eye care providers ("readers") review the clinical data and recommend appropriate follow-up. One of the most common referrals from TECS has been for glaucoma and the current study was undertaken to identify aspects of the protocol that could be refined to enhance accuracy with regards to glaucoma detection. Design Prospective comparison between the standard TECS protocol versus a Face-To-Face (FTF) exam on 256 patients, all of whom had no known history of significant ocular disease. Participants Patients with no known ocular disease who were scheduled for an in-person eye appointment at the Atlanta VA. Intervention Patients underwent screening through the TECS protocol and also received a FTF exam on the same day ("gold standard"). The TECS readers were masked to the results of the FTF exam. Main Outcome Measures Percent agreement, kappa, sensitivity, and specificity were calculated for the TECS readers' interpretations versus the FTF exam. Results TECS readers showed substantial agreement for cataract ( $\square \geq 0.71$ ), diabetic retinopathy ( $\square \geq 0.61$ ), and moderate to substantial agreement for glaucoma/glaucoma suspect ( $\square \geq 0.52$ ) compared to a FTF exam. Age-related macular degeneration (AMD) showed moderate agreement ( $\kappa \geq 0.34$ ). Percent agreement with the TECS protocol was high ( 84.3 to $98.4 \%$ ) for each of the disease categories. Overall sensitivity and specificity was $\geq 60 \%$ and $\geq 80 \%$, respectively, for any diagnosis resulting in referral. Inter-and intra-reader agreement was substantial for most diagnoses ( $\kappa>0.61$ ) with percent agreements ranging from $66 \%$ to $99 \%$. Conclusions Our results indicate that the standard TECS protocol is accurate when compared to a FTF exam for the detection of common eye diseases. The inclusion of additional testing such as optical coherence tomography could further enhance diagnostic capability.

\section*{Taxonomy}

Manuscript category Corresponding Author Corresponding Author's Institution

Order of Authors

Telemedicine, Telemedicine in Ophthalmology Manuscript April Maa Atlanta VAMC

April Maa, Charles Medert, Xiaoqin Lu, Rabeea Janjua, Ashley Howell, Kelly Hunt, Sarah McCord, ANNETTE giangiacomo, Mary Lynch


## Submission Files Included in this PDF

File Name [File Type]
TECS compare no OCT_cover letter.docx [Cover Letter]
TECS Compare Part 1_response to reviewers.docx [Response to Reviewers]
TECS Compare no OCT_manuscript_revision_tracked changes_no tables.doc [Revised Manuscript with Changes Marked]

TECS compare no OCT_precis.docx [Highlights]
TECS Compare no OCT_manuscript_revision_clean copy_no tables.doc [Manuscript File]
Table 1.docx [Table]
Table 2_revision_tracked changes.doc [Table]
Table 2_revision_clean.doc [Table]
Table 3.docx [Table]
Table 4.docx [Table]
Table 5_revision_tracked changes.doc [Table]
Table 5_revision_clean.doc [Table]
OPHTHA_COI_MAA.pdf [Conflict of Interest]
OPHTHA_COI_GIANGIACOMO.pdf [Conflict of Interest]
OPHTHA_COI_HOWELL.pdf [Conflict of Interest]
OPHTHA_COI_LU.pdf [Conflict of Interest]
OPHTHA_COI_Lynch.pdf [Conflict of Interest]
OPHTHA_COI_McCord.pdf [Conflict of Interest]
OPHTHA_COI_Medert.pdf [Conflict of Interest]
OPHTHA_COI_HUNT.pdf [Conflict of Interest]
OPHTHA_COI_Janjua.pdf [Conflict of Interest]
OPHTHA_Contributorship.pdf [Author Agreement]
Figure 1 Supplemental.docx [e-Component]
Two-by-two tables.docx [Supporting File]
2019-06-10_Sensitivity-Specificity_recalculations_SAS output.pdf [Supporting File]
Urken approval acknowledgement letter.pdf [Supporting File]
d-signed_7.1.19.pdf [Supporting File]
To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE Homepage, then click 'Download zip file'.

May 2, 2019
Dear Editor:
We herewith submit our manuscript, "Diagnostic Accuracy of Technology-based Eye Care Services (TECS): The TECS Compare Trial Part I" to Ophthalmology Journal for consideration of publication. This paper represents original work, with all authors providing substantial contribution to the gathering or analysis of data, writing the paper, and agree with the final version submitted here.

This paper has not in part or whole, been published elsewhere nor is it being considered for publication at any other journal other than what is described above.

Dr. April Maa will serve as corresponding author. None of the authors have a financial conflict of interest in the subject matter. The views expressed here are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs or the United States government.

We have no recommendations for reviewers. We also do not have any opposition to reviewers wishing to evaluate our study.

Thank you for the opportunity to submit our work for review.
Regards,


April Maa, MD
Clinical Director of TECS
Regional Telehealth Services, VISN 7, Atlanta GA
Associate Professor
Emory Eye Center, Emory University School of Medicine
1670 Clairmont Road MC 112E
Decatur GA 30033
404-321-6111 x 1-207945
amaa@emory.edu

## POINT-BY-POINT RESPONSE FORM

Please list the editor's, reviewer(s)', and editorial office's comments in the left-hand column, spacing them so that you can insert the relevant response in the center column and the respective point(s) in the text (and tables or legends, if appropriate) in the right-hand column. Adding line numbers to the manuscript file and referring to specific line numbers will be useful in determining which parts of the manuscript changed.

Manuscript \#: OPHTHA_2019_471
Manuscript title: Diagnostic Accuracy of Technology-based Eye Care Services (TECS): The TECS Compare Trial Part I

| Suggestion, Question, or Comment from the Editor | Author's Response | Change in the Manuscript |
| :---: | :---: | :---: |
| I am confused by table 2. If FTF is the "gold standard", then sensitivity should be the percentage of true cases (by FTF) that are correctly identified by the reader. And specificity should be the percentage of true non-cases (identified by FTF) that are identified as non-cases by the reader. <br> I was unable to make a $2 \times 2$ table with the data presented that yielded the sensitivity and specificity figures shown (for any of the conditions). Can the authors please show the $2 \times 2$ tables for each condition and check their computation of sensitivity and specificity? (maybe not to be included in the manuscript itself, but I need to see them) | We very much appreciate the feedback from the Editor. We went back to evaluate the statistics and detected an error in the calculations - TECS was used as the gold standard in our first set of calculations by mistake. We deeply apologize for this inadvertent error. We have attached the $2 \times 2$ tables and the SAS outputs for the Editor's review. All the calculations were triple checked and the manuscript edited for accuracy. The difference did not change the overall message of the paper. | Throughout tables 2 and 5 . <br> Please see SAS files and $2 \times 2$ table outputs as well. <br> Multiple lines of the manuscript in the results and discussion section were edited as well. |


| Suggestion, Question, <br> or Comment from <br> Reviewer \#1 | Author's Response | Change in the <br> Manuscript |
| :---: | :--- | :--- |
| Specific comments: Line 73-- <br> "does not have clear visual criteria <br> for diagnosis (unlike AMD or DR)." | This was edited to be <br> more clear that the <br> visible findings are not <br> sufficient alone for the <br> diagnosis of glaucoma | Line 107-108 in <br> tracked changes <br> manuscript |


| This seems to mean clearly visible <br> criteria. Clearly visualizable? | - one requires HVF <br> and OCT |  |
| :---: | :--- | :--- |
| Line 111 Suggest using "masked" <br> rather than "blinded". | Changed | Line 145 in tracked <br> changes manuscript |
| Line 115. For the 150 patients <br> randomly selected for a reread, were <br> they reread by the original readers <br> or randomly assigned for rereads? | Re-read by original <br> readers. Clarified in <br> manuscript | Line 148-150 in <br> tracked changes <br> manuscript |
| Discussion is good with regard to the <br> Iower accuracy for the more <br> uncommon AMD cases - maybe due <br> to low prevalence in this AA <br> population? | Yes our prevalence of <br> AMD is low in our <br> patient population | Line 221-222 in <br> tracked changes <br> manuscript |


| Suggestion, Question, <br> or Comment from <br> Reviewer \#2 | Author's Response | Change in the <br> Manuscript |
| :--- | :--- | :--- |
| In the abstract results section, I suggest <br> the agreement for the <br> glaucoma/glaucoma suspect diagnoses be <br> labelled as "moderate to substantial" since <br> the kappa reported is $\geq 0.52$. The authors <br> have written it this way to represent the <br> kappa for both Readers 1 and 2 but the <br> number 0.52 is considered a moderate <br> kappa and it is slightly misleading to label <br> that number as substantial. | Thank you. This <br> change has been <br> made | Line 60 in the abstract <br> of the tracked <br> changes manuscript |


| Suggestion, Question, <br> or Comment from the <br> Editorial Office | Author's Response | Change in the <br> Manuscript |
| :--- | :--- | :--- |
| None | N/A |  |

Title: Diagnostic Accuracy of Technology-based Eye Care Services (TECS): The TECS Compare Trial Part I

## Authors and Affiliations:

April Y Maa, MD*1,2; Charles M. Medert, MD³, MD; Xiaoqin Lu, MD ${ }^{1,2}$; Rabeea Janjua, MD ${ }^{1}$; Ashley V. Howell, MPH4; Kelly J Hunt, PhD4; Sarah McCord, MD5; Annette Giangiacomo, MD¹, Mary G Lynch, MD ${ }^{2,6}$.<br>*Corresponding author<br>1 TECS Division, Regional Telehealth Services, VISN 7, Atlanta Veteran Affairs Health Care System, Atlanta GA<br>2 Emory University School of Medicine, Atlanta GA<br>3 Bascom Palmer Eye Institute, University of Miami, Miami FL<br>4 Charleston Health Equity and Rural Outreach Innovation Center (HEROIC), Ralph A. Johnson Department of Veterans Affairs Medical Center, Charleston SC<br>5 New York Eye and Ear Infirmary, New York NY<br>6 Ophthalmology Division, Surgical Services, Atlanta Veteran Affairs Health Care System, Atlanta GA

Meeting Presentation: None.

Financial Support: This research was partially funded by Atlanta Clinical and Translational Institute (ACTSI) Translational Research grant. The funding source had no role in the design or conduct of this study.

Conflict of Interest: None for any authors.

## Running Head (Short title): Diagnostic Accuracy of the TECS Protocol

## Corresponding Author:

April Maa, MD
1670 Clairmont Road MC 112E
Decatur GA 30033
amaa@emory.edu
404-321-6111 x 1-207945

## Abstract: <br> Purpose

Ophthalmologic telemedicine has the ability to provide eye care for patients remotely and many countries have utilized screening tele-ophthalmology programs for several years. One such initiative at the Veteran Affairs' (VA) Healthcare System is Technology-based Eye Care Services (TECS). TECS services are located in primary care clinics and provide basic eye care including vision, refraction, and retinal photography. Eye care providers ("readers") review the clinical data and recommend appropriate follow-up. One of the most common referrals from TECS has been for glaucoma and this study was powered for glaucoma/glaucoma suspect detection. The current study was undertaken to identify aspects of the protocol that could be refined to enhance accuracy.

## Design

Prospective comparison between the standard TECS protocol versus a Face-To-Face (FTF) exam on 256 patients, all of whom had no known history of significant ocular disease.

## Participants

Patients with no known ocular disease who were scheduled for an in-person eye appointment at the Atlanta VA.

## Intervention

Patients underwent screening through the TECS protocol and also received a FTF exam on the same day ("gold standard"). The TECS readers were masked to the results of the FTF exam.

## Main Outcome Measures

Percent agreement, kappa, sensitivity, and specificity were calculated for the TECS readers' interpretations versus the FTF exam.

## Results

TECS readers showed substantial agreement for cataract ( $\kappa \geq 0.71$ ), diabetic retinopathy ( $\kappa$ $\geq 0.61$ ), and moderate to substantial agreement for glaucoma/glaucoma suspect ( $\kappa \geq 0.52$ )
compared to a FTF exam. Age-related macular degeneration (AMD) showed moderate agreement ( $\mathrm{k} \geq 0.34$ ). Percent agreement with the TECS protocol was high ( 84.3 to $98.4 \%$ ) for each of the disease categories. Overall sensitivity and specificity was $\geq 6075 \%$ and $\geq \underline{5580 \%}$, respectively, for any diagnosis resulting in referral. Inter-and intra-reader agreement was substantial for most diagnoses ( $\kappa>0.61$ ) with percent agreements ranging from $66 \%$ to $99 \%$.

## Conclusions

Our results indicate that the standard TECS protocol is accurate when compared to a FTF exam for the detection of common eye diseases. The inclusion of additional testing such as optical coherence tomography could further enhance diagnostic capability.

Telemedicine is defined as care given to patients when the provider and the patient are separated by distance, time, or both. Ophthalmology is an ideal specialty for telemedicine as diagnoses made during face-to-face (FTF) visits are often based upon pattern recognition and the use of multiple imaging modalities. Images and clinical information such as vision and eye pressure can be collected remotely and then transmitted electronically to a physician stationed at another location for interpretation. This form of telemedicine is called 'store and forward' or 'asynchronous', and one of the most common uses of store and forward ophthalmologic telemedicine is diabetic teleretinal imaging (TRI). Teleretinal screening for diabetes is utilized worldwide to reduce blindness from diabetic retinopathy (DR). ${ }^{1-3}$ Diabetic TRI is well validated, and many studies have illustrated that other common ocular diseases such as glaucoma, cataract, and age-related macular degeneration (AMD) can also be incidentally detected with these photographs. ${ }^{2-6}$ This knowledge has led to the expansion of various tele-ophthalmology programs to use fundus photos to screen for other common eye conditions.

The Veterans Health Administration (VA) has a particular interest in novel telemedicine interventions because VA is one of the largest integrated healthcare systems in the United States with more than 5.5 million patients $^{7}$, many of whom live in rural communities. The VA has long been at the forefront of using telemedicine tools to decrease health disparities of the medically underserved because barriers to telemedicine such as reimbursement and licensure are mitigated in a single integrated healthcare system. Since 2006, the VA has utilized a national diabetic TRI program to screen for DR. In 2015, the Atlanta VA developed Technology-based Eye Care Services (TECS), an extension of the TRI program that provides broader eye screening and eyeglasses to all eligible Veterans regardless of diabetic status. The most common referral from TECS has been for glaucoma suspect or frank glaucoma. ${ }^{8,9}$ The current study was undertaken to further investigate the TECS protocol and to identify aspects of the process that could be further refined to enhance accuracy.

## Methods:

This project was approved by the Emory University Institutional Review Board (IRB) and the VA Research and Development Committee. This project conformed to the tenets in the Declaration of Helsinki and was HIPAA compliant. The study was registered at clinicaltrials.gov under the identifier NCT02558712. This research was partially funded by the Atlanta Clinical and Translational Science Institute (ACTSI), however, no conflict of interest exists for any of the authors.

Participants were recruited over a two-year period, from March 2015 until December 2017. Power calculations were based on the expected prevalence of glaucoma suspect/glaucoma in the Veteran population. The trial was powered for glaucoma detection because this is a common disease that is asymptomatic in its earliest stages and also presents the greatest challenge for obtaining consensus because the disease is not diagnosed based on visual criteria alonedoes not have clear visual criteria for diagnosis (unlike AMD or DR). ${ }^{8}$ A sample size of 250 produces a two-sided $95 \%$ confidence interval with widths equal to 0.127 , 0.117 and 0.078 for kappa statistics of $0.5,0.7$, and 0.9 , respectively.

The Atlanta VA Eye Clinic offers routine appointments in the "New Comprehensive Clinic" (NCC) for patients who have not had an exam for 2 or more years. These patients have no known ocular disease and are presenting for a baseline assessment. Recruitment letters were mailed to patients who were already scheduled into NCC informing them of the study, and patients self-selected to participate in the trial. Once patients agreed to participate, their Computerized Patient Record System (CPRS) chart was reviewed to confirm that there was no known history of macular degeneration (AMD), glaucoma, visually significant cataract, moderate-to-severe diabetic retinopathy (DR), or macular edema. Patients with "glaucoma suspect" history were excluded if they had documented visual field changes or history of therapy. On the day of their NCC visit, informed consent was obtained from eligible participants and a full TECS screening protocol was initiated. The TECS protocol included a detailed chief
complaint, ocular, medical, social, and family history. Distance vision with present correction (if available) was assessed using a Marco ARK-1S auto-refractor in both eyes. The auto-refractor was utilized to obtain an auto-refraction, and the vision re-assessed through the Marco unit with the auto-refraction in place. Then the patient was brought to a standard eye lane, and manifest refraction with a phoropter was performed using the auto-refractor's prescription as a starting point. Distance and near 'best corrected' spectacle visual acuity was recorded. Pupils, intraocular pressure (iCare tonometer), central corneal thickness (Accutome Pachpen), and anterior chamber depth (utilizing Finhoff transilluminator) were measured. The patient's eyes were dilated using 1\% Tropicamide drops. Once dilated, a Canon CX-1 camera was used to collect for each eye one external and three non-stereoscopic, 45 degree field, color fundus photographs according to the VA diabetic teleretinal protocol ${ }^{10}$ (Figure 1, supplemental). Finally, the patient received a FTF exam by a comprehensive ophthalmologist (AYM). The FTF examiner would indicate whether the patient needed a follow up visit to the Eye Clinic for further testing or initiate treatment. At the end of each patient's visit, the FTF physician completed a standardized reporting form specifically detailing whether there was a surgical cataract (defined as best corrected vision worse than 20/40, or glare vision worse than 20/40), glaucoma suspect/glaucoma, AMD, or DR if the patient was diabetic.

Study patients were assigned a code by research staff. Each patient's history, clinical data, and ocular photographs were de-identified and placed into a secure research database (REDCap). ${ }^{11}$ The de-identified information was transmitted to two Ophthalmologists (Reader 1 $=R J$, Reader $2=X A L$ ) who individually reviewed the information and provided interpretations in accordance with established TECS reading guidelines. ${ }^{8}$ Neither reader knew the patient's true identity, they had never met the patient in-person, nor did they have access to the patient's CPRS medical chart. Readers were also maskedblinded to the examining physician's findings and to each other's interpretations. The Reading physicians interpreted the TECS information and documented their findings on a REDCap case report form that was identical to the FTF
physician's form. Three months after completion of enrollment, each reader had 150 patients were-randomly selected for a second read. Studies were-re-read by the original reader. ReadersOn the second interpretation Readers; were maskedblinded to their initial read_- and repeated the same procedure above and re-documented their findings on REDCap case report forms.

Data were analyzed using SAS statistical software (Cary, NC). Five diagnostic categories were created: surgical cataracts, glaucoma suspect/glaucoma, AMD, DR, and any condition requiring referral. Each diagnosis category was recorded as present or not present. We measured concordance between diagnoses obtained from the TECS protocol with those obtained from FTF visits using percent agreement and Cohen's kappa statistics. The screening performance of the TECS protocol was assessed with sensitivity and specificity measures, using the FTF visits as the 'gold standard'. We also calculated percent agreement and kappa statistics to compare diagnostic classifications performed by the two readers (inter-reader agreement) and for the same reader 90 days apart (intra-reader agreement). All statistical tests were two-sided and considered significant at an alpha 0.05 level.

## Results:

A total of 256 patients were recruited in the 2-year period. Table 1 illustrates the demographics of the study population. Most patients enrolled in the study were male (86.7\%) and African American (61.3\%). A quarter of the subjects had a history of eye trauma or a family history of significant eye diagnoses or blindness.

Table 2 indicates the percent agreement, kappa statistics, sensitivity, and specificity of the TECS protocol between the 2 readers and the FTF exam. According to the FTF provider, the prevalence of surgical cataracts in our study population was 3.9\%, glaucoma suspect/glaucoma was $26.6 \%$, AMD was $2.3 \%$, DR was $3.1 \%$, and the presence of any condition resulting in referral was $43.8 \%$. Using the TECS protocol, readers diagnosed more
patients with cataracts ( $6.3 \%$ and $5.9 \%$ for Reader 1 and Reader 2, respectively) and any condition requiring referral ( $48.1 \%$ and $59.0 \%$ for Reader 1 and Reader 2, respectively) compared to the FTF physician, and diagnosed fewer patients with glaucoma ( $25.4 \%$ and 14.5\% for Reader 1 and Reader 2, respectively). Percent agreement between the diagnostic classifications obtained from FTF visits and the TECS protocol ranged from $68.4 \%$ to $98.4 \%$, with the lowest level of agreement observed in the compound variable, 'any diagnosis resulting in referral' ( $75.4 \%$ and $68.4 \%$ for Reader 1 and Reader 2, respectively). Diagnostic concordance with the FTF visits was higher for Reader 1 than for Reader 2, with kappa statistics between 0.51 and 0.77 for Reader 1 and between 0.34 and 0.71 for Reader 2 . Specificity for the TECS protocol was very-generally high. Specificity measures for cataracts, glaucoma, macular degeneration and diabetic retinopathythe diagnostic categories fell between 0.80-91 and 1.000.99 for both readers, whereas specificity estimates for any diagnosis resulting in referral were 0.74 and 0.58 for Reader 1 and Reader 2, respectively. Ssensitivity estimates exhibited more variation with values ranginged from $0.60-\underline{50}$ to $0.75 \underline{1.00}$ for Reader 1 and $0.25 \underline{47}$ to 0.87 90 for Reader 2.

Tables 3 and 4 illustrate inter-reader and intra-reader variability, respectively. Interreader agreement was highest for cataracts ( $\kappa=0.83$ ), followed by glaucoma ( $\kappa=0.62$ ), DR ( $\kappa=$ $0.61)$, and AMD ( $\kappa=0.46$ ). The readers differed most often in their categorization of 'any diagnosis resulting in referral' ( $\kappa=0.33$ ). Reader 1 diagnosed more patients with glaucoma than Reader 2, while Reader 2 was more likely to diagnose patients with AMD compared to Reader 1. According to the intra-reader agreement calculations, Reader 2's diagnostic classifications were slightly more consistent over time. Kappa statistics for diagnoses made 90 days apart ranged from 0.59 to 0.87 for Reader 2 and 0.39 to 0.70 for Reader 1. Notably, Reader 1 diagnosed one patient with AMD at the initial TECS assessment and zero patients at the 90-day TECS assessment, so we were unable to calculate the kappa statistic for this category for Reader 1.

## Discussion:

The results demonstrate that the TECS protocol had high percent agreement with moderate to substantial kappa values when compared to a FTF exam for the 4 most common causes of visual loss in the Veteran population.

For the purposes of this analysis, we used the definition of kappa in Landis and Koch: $\mathrm{\kappa}=0.0-0.20$ none to slight agreement, $\mathrm{k}=0.21-0.40$ fair agreement, $\mathrm{k}=0.41-0.60$ moderate agreement, $\kappa=0.61-0.80$ substantial agreement, and $\kappa>0.80$ near perfect agreement. ${ }^{12}$ Table 5 is a summary table that reports the results from the TECS trial alongside other published literature. Values that are missing indicate the authors did not publish that calculation.

## Cataract

There are very few studies in the literature that directly compare photographs to a FTF exam for the diagnosis of cataract. Our study results for sensitivity and kappa are consistent with both Gupta ${ }^{13}$ and Conlin. ${ }^{14}$ The lower sensitivity for TECS compared to Gupta might be explained by: 1) different study population/surgical cataract prevalence and 2) unlike the Gupta protocol, TECS does not use a slit lamp photo for the anterior segment. The TECS protocol actually had better specificity than Gupta in the diagnosis of cataract.

## Macular Degeneration

While there was very high percent agreement with the FTF exam, the lowest kappa overall in the study for both Reader 1 and 2 were for AMD. Our results are difficult to interpret because of there is low prevalence of AMD in our specific Veteran population, thereby athe low number of AMD cases in theour study, resulting in imprecise estimates of sensitivity, specificity, and kappa. Nevertheless, TECS results were similar to three other studies comparing photos to a FTF exam for AMD (Table 5). ${ }^{14-16}$

## Diabetic Retinopathy

Several studies have compared fundus images for DR detection with a retinal examination. The TECS kappa was similar to studies comparing a retinal examination to photographs (Conlin ${ }^{14}$ and Kerr et al ${ }^{17}$ ) with TECS having a better percent agreement than Cavallerano ${ }^{18}$ and Gomez-Ulla. ${ }^{19}$ One reason for the differences in the reported data might be study design or DR classification scheme. For example, Cavallerano et al performed a FTF exam about 30 days post imaging and Gomez-Ulla used a modified Airlie House classification whereas TECS uses early treatment diabetic retinopathy study (ETDRS) classification.

## Glaucoma/Glaucoma Suspect

The TECS trial was powered for glaucoma and glaucoma suspect detection. Glaucoma is one of the most difficult disease entities to consistently diagnose because multiple factors are considered when making the diagnosis. Not surprisingly then, kappa values for TECS readers were slightly lower for glaucoma (compared to cataract or DR) but still reflected moderate to substantial agreement with the FTF exam. Furthermore, TECS had a higher percent agreement than Gupta ${ }^{13}$, kappa was similar to 3 other studies, and Reader 1's estimates were comparable to the Thomas et al ${ }^{20}$ large meta-analysis with regard to tele-glaucoma sensitivity and specificity.

## Intra and Inter-observer Variability of TECS

The data demonstrates that the TECS protocol allowed for substantial to near-perfect agreement between Reader 1 and 2, with k of 0.61 (DR and glaucoma) to 0.83 (cataract). The only value that was slightly lower was AMD at 0.46 and the K is less reliable because of the very low number of cases. In addition, the percent agreement was very high, ranging from 87-98\% between the readers. Most importantly, inter-observer agreement for glaucoma/glaucoma
suspect was substantial ( 0.62 ) and percent agreement was high ( $>80 \%$ ). These results are consistent with previously published literature for glaucoma suspect/glaucoma ( 0.50 to 0.68 ) $)^{21-}$ ${ }^{24}$; TECS was even on par with inter-reader data obtained between glaucoma specialists. ${ }^{22}$ Intra-reader variability was minimal as both Reader 1 and Reader 2 had substantial to near-perfect agreement when they reviewed the same information after the 90 day wash out period. Kappa statistics were in the substantial to near-perfect range, 0.70-0.87, and percent agreements from 89-99\%.

## Overall Assessment of TECS

Overall, TECS has good sensitivity and excellent specificity when compared to a FTF eye exam. Given that the trial was powered for glaucoma/glaucoma suspect, readers were $7547 \%-7287 \%$ sensitive when compared to the FTF provider in detecting cases of glaucoma/glaucoma suspect. These glaucoma detection percentages make TECS useful as a screening tool since it allows for more thanup to three quarters of asymptomatic patients to be identified and is used in a population that might not otherwise receive care and therefore go undiagnosed. Limitations in sensitivity, however, suggest that patients should still receive FTF exams at some interval, supporting the TECS protocol which does not permit patients to continue telemedicine screening indefinitely.

The high specificity of TECS indicates that when the readers don't find a problem, there is a high chance of a true abnormality being presentthe patient being truly free of abnormalities. Limitations in sensitivity, however, suggest that patients should still receive FTF exams at some interval, supporting the TECS protocol which does not permit patients to continue telemedicine screening indefinitely. Theserefore, this data also emphasizes the importance of ensuring screened patients receive follow up care-It also and stressses the importance of an Eye Clinic utilizing telemedicine to appropriately plan resources to accommodate follow up patients. ${ }^{25}$ Moreover, the high kappa and percent agreement for inter- and intra-reader variability supports
the premise that the TECS protocol promotes equal quality of care across sites, concordance between different readers, and consistency of reads over time. Finally, the TECS data shows similar kappa values, percent agreements, sensitivity and specificity as other published trials such as Sperduto ${ }^{26}$ and Conlin ${ }^{14}$, confirming their findings and conclusions that a "Technology Assisted Exam" like TECS, is comparable to a FTF exam for detection of cataract, glaucoma, $D R$, and AMD.

There were several limitations to our study. The sample size, while adequately powered for glaucoma suspect/glaucoma, did not have a high enough number of cases of the other disease entities such as AMD. This may help explain why, despite a high percent agreement, the kappa values were lower and sensitivity/specificity are more difficult to calculate reliably. In addition, the Veteran population is quite different from the greater US population ${ }^{4}$, possibly limiting generalizability. Recruitment strategies (patients self-volunteered for the study) may have introduced selection bias. The potential to receive free additional imaging studies may have prompted sicker patients to volunteer at higher rates compared to healthy counterparts. Finally, the study was based upon the presumption that the FTF exam is $100 \%$ accurate, $100 \%$ consistent, and represents a standardized modality for the diagnosis of all diseases of interest. Having only one FTF examiner may have introduced bias related to individual practice patterns and skill level. Calculations might change if differences between the 2 readers and the FTF physician were adjudicated in order to arrive at the "truth" and both the FTF examiner and the reader were compared to the "truth". Results may also change if both TECS and the FTF examiner are compared to the patient's actual clinical outcome. Specifically, for glaucoma/glaucoma suspect, the trial data compares the initial TECS exam to the initial FTF exam, but the FTF exam may eventually reveal false positives (overcalls) where patients are found not to have glaucoma (physiologic cupping) after ancillary testing is completed.

Future studies can address some of the above issues. Adding multiple FTF examiners and adjudicating their diagnoses may reduce variation and help form a more reliable 'gold
standard'. Having the study data read by more readers, including a glaucoma or retina specialist, may change the kappa or sensitivity/specificity, especially for the glaucoma or AMD/DR diagnostic group. Finally, comparing TECS and FTF to the long term clinical outcome may allow for better assessment of the performance of TECS for the diagnosis of glaucoma/glaucoma suspect.

In summary, part I of the TECS Compare trial demonstrated high percent agreements, substantial kappa agreement, and sensitivity and specificity equal or potentially better than previously published literature for the detection of common ocular disease. The inclusion of additional, sophisticated ophthalmic testing such as ocular coherence tomography (OCT), visual fields, or contrast sensitivity may improve diagnostic agreement and sensitivity, especially for AMD or glaucoma/glaucoma suspect, and will be analyzed in part II of this trial. The current TECS protocol is accurate when compared to a FTF exam, especially with regard to glaucoma/glaucoma suspect, and allows for correct identification of abnormal patients with high precision and reliability. TECS can serve as a beneficial tool to help address the growing need for accessible eye care in the VA healthcare system and potentially in the private sector.

## Acknowledgements

This work was supported partially by funding from the Atlanta Clinical and Translational Institute (ACTSI grant). This project also would not have been possible without the support of the Atlanta VA Ophthalmology Chief, Dr. Steven Urken, the Atlanta VA Eye Clinic staff, the reading physicians, the medical students, and the ophthalmic technicians. A special thanks to the project's Research Coordinator, Deirdre Dixon, whose hard work and commitment to the project were truly invaluable to the study's success.

## References:

1. Nathoo N, Ng M, Rudnisky CJ, Tennant MT. The prevalence of diabetic retinopathy as identified by teleophthalmology in rural Alberta. Can J Ophthalmol. 2010;45(1):28-32.
2. Ng M, Nathoo N, Rudnisky CJ, Tennant MT. Improving access to eye care: teleophthalmology in Alberta, Canada. J Diabetes Sci Technol. 2009;3(2):289-296.
3. Boucher MC, Desroches G, Garcia-Salinas R, et al. Teleophthalmology screening for diabetic retinopathy through mobile imaging units within Canada. Can J Ophthalmol. 2008;43(6):658668.
4. Ong HS, Levin S, Vafidis G. Glaucoma detection using optic disc images from the English national screening programme for diabetic retinopathy. J Glaucoma. 2013;22(6):496-500.
5. Paul PG, Raman R, Rani PK, Deshmukh H, Sharma T. Patient satisfaction levels during teleophthalmology consultation in rural South India. Telemed J E Health. 2006;12(5):571-578.
6. Rosengren D, Blackwell N, Kelly G, Lenton L, Glastonbury J. The use of telemedicine to treat ophthalmological emergencies in rural Australia. J Telemed Telecare. 1998;4 Suppl 1:97-99.
7. Knoblauch H. Focused Ethnography. Qualitative Social Research, 6(3) Article 442005.
8. Maa AY, Evans C, DeLaune WR, Patel PS, Lynch MG. A novel tele-eye protocol for ocular disease detection and access to eye care services. Telemed J E Health. 2014;20(4):318-323.
9. Maa AY, Patel S, Chasan JE, Delaune W, Lynch MG. Retrospective Evaluation of a Teleretinal Screening Program in Detecting Multiple Nondiabetic Eye Diseases. Telemed J E Health. 2016.
10. Cavallerano AA, Conlin PR. Teleretinal imaging to screen for diabetic retinopathy in the Veterans Health Administration. J Diabetes Sci Technol. 2008;2(1):33-39.
11. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377-381.
12. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159-174.
13. Gupta SC, Sinha SK, Dagar AB. Evaluation of the effectiveness of diagnostic \& management decision by teleophthalmology using indigenous equipment in comparison with in-clinic assessment of patients. Indian J Med Res. 2013;138(4):531-535.
14. Conlin PR, Asefzadeh B, Pasquale LR, Selvin G, Lamkin R, Cavallerano AA. Accuracy of a technology-assisted eye exam in evaluation of referable diabetic retinopathy and concomitant ocular diseases. The British journal of ophthalmology. 2015;99(12):1622-1627.
15. Pirbhai A, Sheidow T, Hooper P. Prospective evaluation of digital non-stereo color fundus photography as a screening tool in age-related macular degeneration. American journal of ophthalmology. 2005;139(3):455-461.
16. Duchin KS, Asefzadeh B, Poulaki V, Rett D, Marescalchi P, Cavallerano A. Teleretinal imaging for detection of referable macular degeneration. Optom Vis Sci. 2015;92(6):714-718.
17. Kerr D, Cavan DA, Jennings B, Dunnington C, Gold D, Crick M. Beyond retinal screening: digital imaging in the assessment and follow-up of patients with diabetic retinopathy. Diabet Med. 1998;15(10):878-882.
18. Cavallerano AA, Cavallerano JD, Katalinic P, et al. Use of Joslin Vision Network digital-video nonmydriatic retinal imaging to assess diabetic retinopathy in a clinical program. Retina (Philadelphia, Pa). 2003;23(2):215-223.
19. Gomez-Ulla F, Fernandez MI, Gonzalez F, et al. Digital retinal images and teleophthalmology for detecting and grading diabetic retinopathy. Diabetes Care. 2002;25(8):1384-1389.
20. Thomas SM, Jeyaraman MM, Hodge WG, Hutnik C, Costella J, Malvankar-Mehta MS. The effectiveness of teleglaucoma versus in-patient examination for glaucoma screening: a systematic review and meta-analysis. PloS one. 2014;9(12):e113779.
21. Breusegem C, Fieuws S, Stalmans I, Zeyen T. Agreement and accuracy of non-expert ophthalmologists in assessing glaucomatous changes in serial stereo optic disc photographs. Ophthalmology. 2011;118(4):742-746.
22. Varma R, Steinmann WC, Scott IU. Expert agreement in evaluating the optic disc for glaucoma. Ophthalmology. 1992;99(2):215-221.
23. Nicolela MT, Drance SM, Broadway DC, Chauhan BC, McCormick TA, LeBlanc RP. Agreement among clinicians in the recognition of patterns of optic disk damage in glaucoma. Am J Ophthalmol. 2001;132(6):836-844.
24. Abrams LS, Scott IU, Spaeth GL, Quigley HA, Varma R. Agreement among optometrists, ophthalmologists, and residents in evaluating the optic disc for glaucoma. Ophthalmology. 1994;101(10):1662-1667.
25. Chasan JE, Delaune B, Maa AY, Lynch MG. Effect of a teleretinal screening program on eye care use and resources. JAMA Ophthalmol. 2014;132(9):1045-1051.
26. Sperduto RD, Hiller R, Podgor MJ, Palmberg P, Ferris FL, 3rd, Wentworth D. Comparability of ophthalmic diagnoses by clinical and Reading Center examiners in the Visual Acuity Impairment Survey Pilot Study. American journal of epidemiology. 1986;124(6):994-1003.

Precis:
The Technology-based Eye Care Services (TECS) protocol is comparable to an in-person exam in terms of diagnostic accuracy and is one valid ophthalmologic telemedicine tool to provide access to eye care for patients.

Title: Diagnostic Accuracy of Technology-based Eye Care Services (TECS): The TECS Compare Trial Part I

## Authors and Affiliations:

April Y Maa, MD*1,2; Charles M. Medert, MD³, MD; Xiaoqin Lu, MD ${ }^{1,2}$; Rabeea Janjua, MD ${ }^{1}$; Ashley V. Howell, MPH4; Kelly J Hunt, PhD4; Sarah McCord, MD5; Annette Giangiacomo, MD¹, Mary G Lynch, MD ${ }^{2,6}$.<br>*Corresponding author<br>1 TECS Division, Regional Telehealth Services, VISN 7, Atlanta Veteran Affairs Health Care System, Atlanta GA<br>2 Emory University School of Medicine, Atlanta GA<br>3 Bascom Palmer Eye Institute, University of Miami, Miami FL<br>4 Charleston Health Equity and Rural Outreach Innovation Center (HEROIC), Ralph A. Johnson Department of Veterans Affairs Medical Center, Charleston SC<br>5 New York Eye and Ear Infirmary, New York NY<br>6 Ophthalmology Division, Surgical Services, Atlanta Veteran Affairs Health Care System, Atlanta GA

Meeting Presentation: None.

Financial Support: This research was partially funded by Atlanta Clinical and Translational Institute (ACTSI) Translational Research grant. The funding source had no role in the design or conduct of this study.

Conflict of Interest: None for any authors.

## Running Head (Short title): Diagnostic Accuracy of the TECS Protocol

## Corresponding Author:

April Maa, MD
1670 Clairmont Road MC 112E
Decatur GA 30033
amaa@emory.edu
404-321-6111 x 1-207945

## Abstract: <br> Purpose

Ophthalmologic telemedicine has the ability to provide eye care for patients remotely and many countries have utilized screening tele-ophthalmology programs for several years. One such initiative at the Veteran Affairs' (VA) Healthcare System is Technology-based Eye Care Services (TECS). TECS services are located in primary care clinics and provide basic eye care including vision, refraction, and retinal photography. Eye care providers ("readers") review the clinical data and recommend appropriate follow-up. One of the most common referrals from TECS has been for glaucoma and this study was powered for glaucoma/glaucoma suspect detection. The current study was undertaken to identify aspects of the protocol that could be refined to enhance accuracy.

## Design

Prospective comparison between the standard TECS protocol versus a Face-To-Face (FTF) exam on 256 patients, all of whom had no known history of significant ocular disease.

## Participants

Patients with no known ocular disease who were scheduled for an in-person eye appointment at the Atlanta VA.

## Intervention

Patients underwent screening through the TECS protocol and also received a FTF exam on the same day ("gold standard"). The TECS readers were masked to the results of the FTF exam.

## Main Outcome Measures

Percent agreement, kappa, sensitivity, and specificity were calculated for the TECS readers' interpretations versus the FTF exam.

## Results

TECS readers showed substantial agreement for cataract ( $\kappa \geq 0.71$ ), diabetic retinopathy ( $\kappa$ $\geq 0.61$ ), and moderate to substantial agreement for glaucoma/glaucoma suspect ( $\kappa \geq 0.52$ )
compared to a FTF exam. Age-related macular degeneration (AMD) showed moderate agreement ( $\mathrm{k} \geq 0.34$ ). Percent agreement with the TECS protocol was high ( 84.3 to $98.4 \%$ ) for each of the disease categories. Overall sensitivity and specificity was $\geq 75 \%$ and $\geq 55 \%$, respectively, for any diagnosis resulting in referral. Inter-and intra-reader agreement was substantial for most diagnoses ( $\kappa>0.61$ ) with percent agreements ranging from $66 \%$ to $99 \%$.

## Conclusions

Our results indicate that the standard TECS protocol is accurate when compared to a FTF exam for the detection of common eye diseases. The inclusion of additional testing such as optical coherence tomography could further enhance diagnostic capability.

Telemedicine is defined as care given to patients when the provider and the patient are separated by distance, time, or both. Ophthalmology is an ideal specialty for telemedicine as diagnoses made during face-to-face (FTF) visits are often based upon pattern recognition and the use of multiple imaging modalities. Images and clinical information such as vision and eye pressure can be collected remotely and then transmitted electronically to a physician stationed at another location for interpretation. This form of telemedicine is called 'store and forward' or 'asynchronous', and one of the most common uses of store and forward ophthalmologic telemedicine is diabetic teleretinal imaging (TRI). Teleretinal screening for diabetes is utilized worldwide to reduce blindness from diabetic retinopathy (DR). ${ }^{1-3}$ Diabetic TRI is well validated, and many studies have illustrated that other common ocular diseases such as glaucoma, cataract, and age-related macular degeneration (AMD) can also be incidentally detected with these photographs. ${ }^{2-6}$ This knowledge has led to the expansion of various tele-ophthalmology programs to use fundus photos to screen for other common eye conditions.

The Veterans Health Administration (VA) has a particular interest in novel telemedicine interventions because VA is one of the largest integrated healthcare systems in the United States with more than 5.5 million patients $^{7}$, many of whom live in rural communities. The VA has long been at the forefront of using telemedicine tools to decrease health disparities of the medically underserved because barriers to telemedicine such as reimbursement and licensure are mitigated in a single integrated healthcare system. Since 2006, the VA has utilized a national diabetic TRI program to screen for DR. In 2015, the Atlanta VA developed Technology-based Eye Care Services (TECS), an extension of the TRI program that provides broader eye screening and eyeglasses to all eligible Veterans regardless of diabetic status. The most common referral from TECS has been for glaucoma suspect or frank glaucoma. ${ }^{8,9}$ The current study was undertaken to further investigate the TECS protocol and to identify aspects of the process that could be further refined to enhance accuracy.

## Methods:

This project was approved by the Emory University Institutional Review Board (IRB) and the VA Research and Development Committee. This project conformed to the tenets in the Declaration of Helsinki and was HIPAA compliant. The study was registered at clinicaltrials.gov under the identifier NCT02558712. This research was partially funded by the Atlanta Clinical and Translational Science Institute (ACTSI), however, no conflict of interest exists for any of the authors.

Participants were recruited over a two-year period, from March 2015 until December 2017. Power calculations were based on the expected prevalence of glaucoma suspect/glaucoma in the Veteran population. The trial was powered for glaucoma detection because this is a common disease that is asymptomatic in its earliest stages and also presents the greatest challenge for obtaining consensus because the disease is not diagnosed based on visual criteria alone (unlike AMD or DR). ${ }^{8}$ A sample size of 250 produces a two-sided $95 \%$ confidence interval with widths equal to $0.127,0.117$ and 0.078 for kappa statistics of $0.5,0.7$, and 0.9 , respectively.

The Atlanta VA Eye Clinic offers routine appointments in the "New Comprehensive Clinic" (NCC) for patients who have not had an exam for 2 or more years. These patients have no known ocular disease and are presenting for a baseline assessment. Recruitment letters were mailed to patients who were already scheduled into NCC informing them of the study, and patients self-selected to participate in the trial. Once patients agreed to participate, their Computerized Patient Record System (CPRS) chart was reviewed to confirm that there was no known history of macular degeneration (AMD), glaucoma, visually significant cataract, moderate-to-severe diabetic retinopathy (DR), or macular edema. Patients with "glaucoma suspect" history were excluded if they had documented visual field changes or history of therapy. On the day of their NCC visit, informed consent was obtained from eligible participants and a full TECS screening protocol was initiated. The TECS protocol included a detailed chief
complaint, ocular, medical, social, and family history. Distance vision with present correction (if available) was assessed using a Marco ARK-1S auto-refractor in both eyes. The auto-refractor was utilized to obtain an auto-refraction, and the vision re-assessed through the Marco unit with the auto-refraction in place. Then the patient was brought to a standard eye lane, and manifest refraction with a phoropter was performed using the auto-refractor's prescription as a starting point. Distance and near 'best corrected' spectacle visual acuity was recorded. Pupils, intraocular pressure (iCare tonometer), central corneal thickness (Accutome Pachpen), and anterior chamber depth (utilizing Finhoff transilluminator) were measured. The patient's eyes were dilated using 1\% Tropicamide drops. Once dilated, a Canon CX-1 camera was used to collect for each eye one external and three non-stereoscopic, 45 degree field, color fundus photographs according to the VA diabetic teleretinal protocol ${ }^{10}$ (Figure 1, supplemental). Finally, the patient received a FTF exam by a comprehensive ophthalmologist (AYM). The FTF examiner would indicate whether the patient needed a follow up visit to the Eye Clinic for further testing or initiate treatment. At the end of each patient's visit, the FTF physician completed a standardized reporting form specifically detailing whether there was a surgical cataract (defined as best corrected vision worse than 20/40, or glare vision worse than 20/40), glaucoma suspect/glaucoma, AMD, or DR if the patient was diabetic.

Study patients were assigned a code by research staff. Each patient's history, clinical data, and ocular photographs were de-identified and placed into a secure research database (REDCap). ${ }^{11}$ The de-identified information was transmitted to two Ophthalmologists (Reader 1 $=$ RJ, Reader $2=X A L$ ) who individually reviewed the information and provided interpretations in accordance with established TECS reading guidelines. ${ }^{8}$ Neither reader knew the patient's true identity, they had never met the patient in-person, nor did they have access to the patient's CPRS medical chart. Readers were also masked to the examining physician's findings and to each other's interpretations. The Reading physicians interpreted the TECS information and documented their findings on a REDCap case report form that was identical to the FTF
physician's form. Three months after completion of enrollment, each reader had 150 patients randomly selected for a second read. Studies were re-read by the original reader. On the second interpretation Readers were masked to their initial read and repeated the same procedure above and re-documented their findings on REDCap case report forms.

Data were analyzed using SAS statistical software (Cary, NC). Five diagnostic categories were created: surgical cataracts, glaucoma suspect/glaucoma, AMD, DR, and any condition requiring referral. Each diagnosis category was recorded as present or not present. We measured concordance between diagnoses obtained from the TECS protocol with those obtained from FTF visits using percent agreement and Cohen's kappa statistics. The screening performance of the TECS protocol was assessed with sensitivity and specificity measures, using the FTF visits as the 'gold standard'. We also calculated percent agreement and kappa statistics to compare diagnostic classifications performed by the two readers (inter-reader agreement) and for the same reader 90 days apart (intra-reader agreement). All statistical tests were two-sided and considered significant at an alpha 0.05 level.

## $\underline{\text { Results: }}$

A total of 256 patients were recruited in the 2-year period. Table 1 illustrates the demographics of the study population. Most patients enrolled in the study were male (86.7\%) and African American (61.3\%). A quarter of the subjects had a history of eye trauma or a family history of significant eye diagnoses or blindness.

Table 2 indicates the percent agreement, kappa statistics, sensitivity, and specificity of the TECS protocol between the 2 readers and the FTF exam. According to the FTF provider, the prevalence of surgical cataracts in our study population was $3.9 \%$, glaucoma suspect/glaucoma was $26.6 \%$, AMD was $2.3 \%$, DR was $3.1 \%$, and the presence of any condition resulting in referral was $43.8 \%$. Using the TECS protocol, readers diagnosed more patients with cataracts (6.3\% and 5.9\% for Reader 1 and Reader 2, respectively) and any
condition requiring referral (48.1\% and 59.0\% for Reader 1 and Reader 2, respectively) compared to the FTF physician, and diagnosed fewer patients with glaucoma (25.4\% and 14.5\% for Reader 1 and Reader 2, respectively). Percent agreement between the diagnostic classifications obtained from FTF visits and the TECS protocol ranged from $68.4 \%$ to $98.4 \%$, with the lowest level of agreement observed in the compound variable, 'any diagnosis resulting in referral' (75.4\% and 68.4\% for Reader 1 and Reader 2, respectively). Diagnostic concordance with the FTF visits was higher for Reader 1 than for Reader 2, with kappa statistics between 0.51 and 0.77 for Reader 1 and between 0.34 and 0.71 for Reader 2. Specificity for the TECS protocol was generally high. Specificity measures for cataracts, glaucoma, macular degeneration and diabetic retinopathy fell between 0.91 and 0.99 for both readers, whereas specificity estimates for any diagnosis resulting in referral were 0.74 and 0.58 for Reader 1 and Reader 2, respectively. Sensitivity estimates exhibited more variation with values ranging from 0.50 to 1.00 for Reader 1 and 0.47 to 0.90 for Reader 2 .

Tables 3 and 4 illustrate inter-reader and intra-reader variability, respectively. Interreader agreement was highest for cataracts $(\kappa=0.83)$, followed by glaucoma ( $\kappa=0.62$ ), DR ( $\kappa=$ $0.61)$, and AMD ( $\kappa=0.46$ ). The readers differed most often in their categorization of 'any diagnosis resulting in referral' ( $\kappa=0.33$ ). Reader 1 diagnosed more patients with glaucoma than Reader 2, while Reader 2 was more likely to diagnose patients with AMD compared to Reader 1. According to the intra-reader agreement calculations, Reader 2's diagnostic classifications were slightly more consistent over time. Kappa statistics for diagnoses made 90 days apart ranged from 0.59 to 0.87 for Reader 2 and 0.39 to 0.70 for Reader 1. Notably, Reader 1 diagnosed one patient with AMD at the initial TECS assessment and zero patients at the 90-day TECS assessment, so we were unable to calculate the kappa statistic for this category for Reader 1.

## Discussion:

The results demonstrate that the TECS protocol had high percent agreement with moderate to substantial kappa values when compared to a FTF exam for the 4 most common causes of visual loss in the Veteran population.

For the purposes of this analysis, we used the definition of kappa in Landis and Koch: $\kappa=0.0-0.20$ none to slight agreement, $\mathrm{K}=0.21-0.40$ fair agreement, $\mathrm{K}=0.41-0.60$ moderate agreement, $\kappa=0.61-0.80$ substantial agreement, and $\kappa>0.80$ near perfect agreement. ${ }^{12}$ Table 5 is a summary table that reports the results from the TECS trial alongside other published literature. Values that are missing indicate the authors did not publish that calculation.

## Cataract

There are very few studies in the literature that directly compare photographs to a FTF exam for the diagnosis of cataract. Our study results for sensitivity and kappa are consistent with both Gupta ${ }^{13}$ and Conlin. ${ }^{14}$ The TECS protocol actually had better specificity than Gupta in the diagnosis of cataract.

## Macular Degeneration

While there was very high percent agreement with the FTF exam, the lowest kappa overall in the study for both Reader 1 and 2 were for AMD. Our results are difficult to interpret because there is low prevalence of AMD in our specific Veteran population, thereby a low number of AMD cases in the study, resulting in imprecise estimates of sensitivity, specificity, and kappa. Nevertheless, TECS results were similar to three other studies comparing photos to a FTF exam for AMD (Table 5). ${ }^{14-16}$

## Diabetic Retinopathy

Several studies have compared fundus images for DR detection with a retinal examination. The TECS kappa was similar to studies comparing a retinal examination to
photographs (Conlin ${ }^{14}$ and Kerr et al ${ }^{17}$ ) with TECS having a better percent agreement than Cavallerano ${ }^{18}$ and Gomez-Ulla. ${ }^{19}$ One reason for the differences in the reported data might be study design or DR classification scheme. For example, Cavallerano et al performed a FTF exam about 30 days post imaging and Gomez-Ulla used a modified Airlie House classification whereas TECS uses early treatment diabetic retinopathy study (ETDRS) classification.

## Glaucoma/Glaucoma Suspect

The TECS trial was powered for glaucoma and glaucoma suspect detection. Glaucoma is one of the most difficult disease entities to consistently diagnose because multiple factors are considered when making the diagnosis. Not surprisingly then, kappa values for TECS readers were slightly lower for glaucoma (compared to cataract or DR) but still reflected moderate to substantial agreement with the FTF exam. Furthermore, TECS had a higher percent agreement than Gupta ${ }^{13}$, kappa was similar to 3 other studies, and Reader 1's estimates were comparable to the Thomas et al ${ }^{20}$ large meta-analysis with regard to tele-glaucoma sensitivity and specificity.

## Intra and Inter-observer Variability of TECS

The data demonstrates that the TECS protocol allowed for substantial to near-perfect agreement between Reader 1 and 2, with k of 0.61 (DR and glaucoma) to 0.83 (cataract). The only value that was slightly lower was AMD at 0.46 and the $\kappa$ is less reliable because of the very low number of cases. In addition, the percent agreement was very high, ranging from 87-98\% between the readers. Most importantly, inter-observer agreement for glaucoma/glaucoma suspect was substantial ( 0.62 ) and percent agreement was high ( $>80 \%$ ). These results are consistent with previously published literature for glaucoma suspect/glaucoma ( 0.50 to 0.68 ) $)^{21-}$ ${ }^{24}$; TECS was even on par with inter-reader data obtained between glaucoma specialists. ${ }^{22}$

Intra-reader variability was minimal as both Reader 1 and Reader 2 had substantial to near-perfect agreement when they reviewed the same information after the 90 day wash out period. Kappa statistics were in the substantial to near-perfect range, 0.70-0.87, and percent agreements from 89-99\%.

## Overall Assessment of TECS

Overall, TECS has good sensitivity and excellent specificity when compared to a FTF eye exam. Given that the trial was powered for glaucoma/glaucoma suspect, readers were $47 \%-72 \%$ sensitive when compared to the FTF provider in detecting cases of glaucoma/glaucoma suspect. These glaucoma detection percentages make TECS useful as a screening tool since it allows for up to three quarters of asymptomatic patients to be identified and is used in a population that might not otherwise receive care and therefore go undiagnosed.

The high specificity of TECS indicates that when the readers don't find a problem, there is a high chance of the patient being truly free of abnormalities. Limitations in sensitivity, however, suggest that patients should still receive FTF exams at some interval, supporting the TECS protocol which does not permit patients to continue telemedicine screening indefinitely. These data also emphasize the importance of ensuring screened patients receive follow up care and stress the importance of an Eye Clinic utilizing telemedicine to appropriately plan resources to accommodate follow up patients. ${ }^{25}$ Moreover, the high kappa and percent agreement for inter- and intra-reader variability supports the premise that the TECS protocol promotes equal quality of care across sites, concordance between different readers, and consistency of reads over time. Finally, the TECS data shows similar kappa values, percent agreements, sensitivity and specificity as other published trials such as Sperduto ${ }^{26}$ and Conlin ${ }^{14}$, confirming their findings and conclusions that a "Technology Assisted Exam" like TECS, is comparable to a FTF exam for detection of cataract, glaucoma, DR, and AMD.

There were several limitations to our study. The sample size, while adequately powered for glaucoma suspect/glaucoma, did not have a high enough number of cases of the other disease entities such as AMD. This may help explain why, despite a high percent agreement, the kappa values were lower and sensitivity/specificity are more difficult to calculate reliably. In addition, the Veteran population is quite different from the greater US population ${ }^{4}$, possibly limiting generalizability. Recruitment strategies (patients self-volunteered for the study) may have introduced selection bias. The potential to receive free additional imaging studies may have prompted sicker patients to volunteer at higher rates compared to healthy counterparts. Finally, the study was based upon the presumption that the FTF exam is $100 \%$ accurate, $100 \%$ consistent, and represents a standardized modality for the diagnosis of all diseases of interest. Having only one FTF examiner may have introduced bias related to individual practice patterns and skill level. Calculations might change if differences between the 2 readers and the FTF physician were adjudicated in order to arrive at the "truth" and both the FTF examiner and the reader were compared to the "truth". Results may also change if both TECS and the FTF examiner are compared to the patient's actual clinical outcome. Specifically, for glaucoma/glaucoma suspect, the trial data compares the initial TECS exam to the initial FTF exam, but the FTF exam may eventually reveal false positives (overcalls) where patients are found not to have glaucoma (physiologic cupping) after ancillary testing is completed.

Future studies can address some of the above issues. Adding multiple FTF examiners and adjudicating their diagnoses may reduce variation and help form a more reliable 'gold standard'. Having the study data read by more readers, including a glaucoma or retina specialist, may change the kappa or sensitivity/specificity, especially for the glaucoma or AMD/DR diagnostic group. Finally, comparing TECS and FTF to the long term clinical outcome may allow for better assessment of the performance of TECS for the diagnosis of glaucoma/glaucoma suspect.

In summary, part I of the TECS Compare trial demonstrated high percent agreements, substantial kappa agreement, and sensitivity and specificity equal or potentially better than previously published literature for the detection of common ocular disease. The inclusion of additional, sophisticated ophthalmic testing such as ocular coherence tomography (OCT), visual fields, or contrast sensitivity may improve diagnostic agreement and sensitivity, especially for AMD or glaucoma/glaucoma suspect, and will be analyzed in part II of this trial. The current TECS protocol is accurate when compared to a FTF exam, especially with regard to glaucoma/glaucoma suspect, and allows for correct identification of abnormal patients with high precision and reliability. TECS can serve as a beneficial tool to help address the growing need for accessible eye care in the VA healthcare system and potentially in the private sector.

## Acknowledgements

This work was supported partially by funding from the Atlanta Clinical and Translational Institute (ACTSI grant). This project also would not have been possible without the support of the Atlanta VA Ophthalmology Chief, Dr. Steven Urken, the Atlanta VA Eye Clinic staff, the reading physicians, the medical students, and the ophthalmic technicians. A special thanks to the project's Research Coordinator, Deirdre Dixon, whose hard work and commitment to the project were truly invaluable to the study's success.

## References:

1. Nathoo N, Ng M, Rudnisky CJ, Tennant MT. The prevalence of diabetic retinopathy as identified by teleophthalmology in rural Alberta. Can J Ophthalmol. 2010;45(1):28-32.
2. Ng M, Nathoo N, Rudnisky CJ, Tennant MT. Improving access to eye care: teleophthalmology in Alberta, Canada. J Diabetes Sci Technol. 2009;3(2):289-296.
3. Boucher MC, Desroches G, Garcia-Salinas R, et al. Teleophthalmology screening for diabetic retinopathy through mobile imaging units within Canada. Can J Ophthalmol. 2008;43(6):658668.
4. Ong HS, Levin S, Vafidis G. Glaucoma detection using optic disc images from the English national screening programme for diabetic retinopathy. J Glaucoma. 2013;22(6):496-500.
5. Paul PG, Raman R, Rani PK, Deshmukh H, Sharma T. Patient satisfaction levels during teleophthalmology consultation in rural South India. Telemed J E Health. 2006;12(5):571-578.
6. Rosengren D, Blackwell N, Kelly G, Lenton L, Glastonbury J. The use of telemedicine to treat ophthalmological emergencies in rural Australia. J Telemed Telecare. 1998;4 Suppl 1:97-99.
7. Knoblauch H. Focused Ethnography. Qualitative Social Research, 6(3) Article 442005.
8. Maa AY, Evans C, DeLaune WR, Patel PS, Lynch MG. A novel tele-eye protocol for ocular disease detection and access to eye care services. Telemed J E Health. 2014;20(4):318-323.
9. Maa AY, Patel S, Chasan JE, Delaune W, Lynch MG. Retrospective Evaluation of a Teleretinal Screening Program in Detecting Multiple Nondiabetic Eye Diseases. Telemed J E Health. 2016.
10. Cavallerano AA, Conlin PR. Teleretinal imaging to screen for diabetic retinopathy in the Veterans Health Administration. J Diabetes Sci Technol. 2008;2(1):33-39.
11. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377-381.
12. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159-174.
13. Gupta SC, Sinha SK, Dagar AB. Evaluation of the effectiveness of diagnostic \& management decision by teleophthalmology using indigenous equipment in comparison with in-clinic assessment of patients. Indian J Med Res. 2013;138(4):531-535.
14. Conlin PR, Asefzadeh B, Pasquale LR, Selvin G, Lamkin R, Cavallerano AA. Accuracy of a technology-assisted eye exam in evaluation of referable diabetic retinopathy and concomitant ocular diseases. The British journal of ophthalmology. 2015;99(12):1622-1627.
15. Pirbhai A, Sheidow T, Hooper P. Prospective evaluation of digital non-stereo color fundus photography as a screening tool in age-related macular degeneration. American journal of ophthalmology. 2005;139(3):455-461.
16. Duchin KS, Asefzadeh B, Poulaki V, Rett D, Marescalchi P, Cavallerano A. Teleretinal imaging for detection of referable macular degeneration. Optom Vis Sci. 2015;92(6):714-718.
17. Kerr D, Cavan DA, Jennings B, Dunnington C, Gold D, Crick M. Beyond retinal screening: digital imaging in the assessment and follow-up of patients with diabetic retinopathy. Diabet Med. 1998;15(10):878-882.
18. Cavallerano AA, Cavallerano JD, Katalinic P, et al. Use of Joslin Vision Network digital-video nonmydriatic retinal imaging to assess diabetic retinopathy in a clinical program. Retina (Philadelphia, Pa). 2003;23(2):215-223.
19. Gomez-Ulla F, Fernandez MI, Gonzalez F, et al. Digital retinal images and teleophthalmology for detecting and grading diabetic retinopathy. Diabetes Care. 2002;25(8):1384-1389.
20. Thomas SM, Jeyaraman MM, Hodge WG, Hutnik C, Costella J, Malvankar-Mehta MS. The effectiveness of teleglaucoma versus in-patient examination for glaucoma screening: a systematic review and meta-analysis. PloS one. 2014;9(12):e113779.
21. Breusegem C, Fieuws S, Stalmans I, Zeyen T. Agreement and accuracy of non-expert ophthalmologists in assessing glaucomatous changes in serial stereo optic disc photographs. Ophthalmology. 2011;118(4):742-746.
22. Varma R, Steinmann WC, Scott IU. Expert agreement in evaluating the optic disc for glaucoma. Ophthalmology. 1992;99(2):215-221.
23. Nicolela MT, Drance SM, Broadway DC, Chauhan BC, McCormick TA, LeBlanc RP. Agreement among clinicians in the recognition of patterns of optic disk damage in glaucoma. Am J Ophthalmol. 2001;132(6):836-844.
24. Abrams LS, Scott IU, Spaeth GL, Quigley HA, Varma R. Agreement among optometrists, ophthalmologists, and residents in evaluating the optic disc for glaucoma. Ophthalmology. 1994;101(10):1662-1667.
25. Chasan JE, Delaune B, Maa AY, Lynch MG. Effect of a teleretinal screening program on eye care use and resources. JAMA Ophthalmol. 2014;132(9):1045-1051.
26. Sperduto RD, Hiller R, Podgor MJ, Palmberg P, Ferris FL, 3rd, Wentworth D. Comparability of ophthalmic diagnoses by clinical and Reading Center examiners in the Visual Acuity Impairment Survey Pilot Study. American journal of epidemiology. 1986;124(6):994-1003.

Table 1: Characteristics of study participants ( $\mathrm{N}=256$ )

| Participant Characteristics | Statistic |
| :--- | :---: |
| Age, mean $\pm$ SD | $60.0 \pm 11.6$ |
| Males, $\mathrm{n}(\%)$ | $222(86.7)$ |
| Race-ethnicity, $\mathrm{n}(\%)$ |  |
| White | $98(38.3)$ |
| Black | $157(61.3)$ |
| Asian | $1(0.4)$ |
| Eye trauma, $\mathrm{n}(\%)^{*}$ | $69(27.6)$ |
| Family history of eye diagnoses or blindness, $\mathrm{n}(\%)^{*}$ | $63(25.2)$ |
| Smoking history, $\mathrm{n}(\%)^{*}$ |  |
| Never | $100(41.7)$ |
| Former | $71(29.6)$ |
| Current | $69(28.8)$ |

*Missing: Eye trauma ( $\mathrm{n}=6$ ); Family eye history ( $\mathrm{n}=6$ ); Smoking history ( $\mathrm{n}=16$ )

Table 2: Prevalence of ophthalmologic diagnoses among study participants and agreement, sensitivity and specificity for diagnoses obtained from FTF exams compared to those obtained using the TECS protocol ( $\mathrm{N}=256$ )

| Diagnosis | FTF* n (\%) | TECS n (\%) | Percent Agreement | Kappa (95\% CI) | Sensitivity (95\% CI) | Specificity (95\% CI) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | FTF | Reader 1 | Reader 1 compared to Face to Face |  |  |  |
| Cataracts referred for surgery | 10 (3.9) | 16 (6.3) | 97.7 | 0.77 (0.57, 0.94) | $\begin{gathered} 1.000 .64(0.69,35, \\ 1.000 .86) \end{gathered}$ | $\begin{gathered} 1.000 .98 \text { (0.9599, } \\ 0.991 .00) \end{gathered}$ |
| Glaucoma and glaucoma suspect | 68 (26.6) | 65 (25.4) | 86.3 | 0.65 (0.54, 0.75) | $0.7 \underline{\underline{2} 5}$ (0.603, 0.825$)$ | 0.910 (0.875, 0.954) |
| Macular degeneration | 6 (2.3) | 5 (2.0) | 98.1 | 0.54 (0.18, 0.90) | $\begin{gathered} 0.5060(0.125, \\ 0.8895) \end{gathered}$ | 0.99 (0.97, 1.00) |
| Diabetic retinopathy (any) | 8 (3.1) | 8 (3.1) | 98.4 | 0.74 (0.50, 0.99) | 0.75 (0.35, 0.97) | 0.99 (0.97, 1.00) |
| Any diagnosis resulting in referral | 112 (43.8) | 123 (48.1) | 75.4 | 0.51 (0.40, 0.61) | $\begin{gathered} 0.770(0.681, \\ 0.8478) \\ \hline \end{gathered}$ | $\begin{gathered} 0.7481(0.6673, \\ 0.817) \\ \hline \end{gathered}$ |
|  | FTF | Reader 2 | Reader 2 compared to Face to Face |  |  |  |
| Cataracts referred for surgery | 10 (3.9) | 15 (5.9) | 97.3 | 0.71 (0.50, 0.91) | $\begin{gathered} 0.960(0.5632, \\ 01.00 .84) \\ \hline \end{gathered}$ | $\begin{gathered} 1.000 .98(0.958, \\ 0.991 .00) \\ \hline \end{gathered}$ |
| Glaucoma and glaucoma suspect | 68 (26.6) | 37 (14.5) | 84.03 | 0.52 (0.40, 0.64) | $\begin{gathered} 0.4787(0.3571, \\ 0.6096) \\ \hline \end{gathered}$ | $\begin{gathered} 0.9784(0.9478, \\ 0.9988) \\ \hline \end{gathered}$ |
| Macular degeneration | 6 (2.3) | 16 (6.3) | 94.5 | 0.34 (0.08, 0.60) | $\begin{gathered} 0.6725(0.2207, \\ 0.9652) \\ \hline \end{gathered}$ | $\begin{gathered} 0.959(0.927, \\ 0.981 .00) \\ \hline \end{gathered}$ |
| Diabetic retinopathy (any) | 8 (3.1) | 8 (3.1) | 97.7 | 0.61 (0.33, 0.90) | 0.63 (0.25, 0.92) | 0.99 (0.97, 1.00) |
| Any diagnosis resulting in referral | 112 (43.8) | 151 (59.0) | 68.4 | 0.38 (0.27, 0.49) | $\begin{gathered} 0.8160(0.7352, \\ 0.8868) \end{gathered}$ | $\begin{gathered} 0.5880(0.5071, \\ 0.6687) \end{gathered}$ |

* A single Face to Face (FTF) exam was done with TECS Reader 1 and TECS Reader 2 being compared to the single FTF exam.

Table 2: Prevalence of ophthalmologic diagnoses among study participants and agreement, sensitivity and specificity for diagnoses obtained from FTF exams compared to those obtained using the TECS protocol ( $\mathrm{N}=256$ )

| Diagnosis | FTF* n (\%) | TECS n (\%) | Percent Agreement | Kappa (95\% CI) | Sensitivity (95\% CI) | Specificity ( $95 \% \mathrm{CI}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | FTF | Reader 1 | Reader 1 compared to Face to Face |  |  |  |
| Cataracts referred for surgery | 10 (3.9) | 16 (6.3) | 97.7 | 0.77 (0.57, 0.94) | 1.00 (0.69, 1.00) | 0.98 (0.95, 0.99) |
| Glaucoma and glaucoma suspect | 68 (26.6) | 65 (25.4) | 86.3 | 0.65 (0.54, 0.75) | 0.72 (0.60, 0.82) | 0.91 (0.87, 0.95) |
| Macular degeneration | 6 (2.3) | 5 (2.0) | 98.1 | 0.54 (0.18, 0.90) | 0.50 (0.12, 0.88) | 0.99 (0.97, 1.00) |
| Diabetic retinopathy (any) | 8 (3.1) | 8 (3.1) | 98.4 | 0.74 (0.50, 0.99) | 0.75 (0.35, 0.97) | 0.99 (0.97, 1.00) |
| Any diagnosis resulting in referral | 112 (43.8) | 123 (48.1) | 75.4 | 0.51 (0.40, 0.61) | 0.77 (0.68, 0.84) | 0.74 (0.66, 0.81) |
|  | FTF | Reader 2 | Reader 2 compared to Face to Face |  |  |  |
| Cataracts referred for surgery | 10 (3.9) | 15 (5.9) | 97.3 | 0.71 (0.50, 0.91) | 0.90 (0.56, 1.00) | 0.98 (0.95, 0.99) |
| Glaucoma and glaucoma suspect | 68 (26.6) | 37 (14.5) | 84.0 | 0.52 (0.40, 0.64) | 0.47 (0.35, 0.60) | 0.97 (0.94, 0.99) |
| Macular degeneration | 6 (2.3) | 16 (6.3) | 94.5 | 0.34 (0.08, 0.60) | 0.67 (0.22, 0.96) | 0.95 (0.92, 0.98) |
| Diabetic retinopathy (any) | 8 (3.1) | 8 (3.1) | 97.7 | 0.61 (0.33, 0.90) | 0.63 (0.25, 0.92) | 0.99 (0.97, 1.00) |
| Any diagnosis resulting in referral | 112 (43.8) | 151 (59.0) | 68.4 | 0.38 (0.27, 0.49) | 0.81 (0.73, 0.88) | 0.58 (0.50, 0.66) |

* A single Face to Face (FTF) exam was done with TECS Reader 1 and TECS Reader 2 being compared to the single FTF exam.

Table 3: Inter-reader Agreement between Reader 1 versus Reader 2 using the TECS protocol ( $\mathrm{N}=256$ )

| Diagnosis | Reader 1 <br> $\mathbf{n ( \% )}$ | Reader 2 <br> $\mathbf{n ( \% )}$ | Percent <br> Agreement | Kappa (95\% CI) |
| :--- | :---: | :---: | :---: | :---: |
| Cataracts referred for surgery | $16(6.3)$ | $15(5.9)$ | 98.1 | $0.83(0.68,0.98)$ |
| Glaucoma and glaucoma suspect | $65(25.4)$ | $37(14.5)$ | 87.5 | $0.62(0.50,0.73)$ |
| Macular degeneration | $5(2.0)$ | $16(6.3)$ | 95.7 | $0.46(0.20,0.72)$ |
| Diabetic retinopathy | $8(3.1)$ | $8(3.1)$ | 97.7 | $0.61(0.33,0.90)$ |
| Any diagnosis resulting in referral | $123(48.1)$ | $151(59.0)$ | 66.4 | $0.33(0.22,0.45)$ |

Table 4: Intra-reader agreement of diagnoses obtained 90 days apart using the TECS protocol ( $\mathrm{N}=150$ )

| Diagnosis | Day 0 TECS <br> $\mathbf{n}(\%)$ | Day 90 TECS <br> $\mathbf{n}(\%)$ | Percent <br> Agreement | Kappa (95\% CI) |
| :--- | :---: | :---: | :---: | :---: |
| Reader 1 | $9(6.0)$ | $5(3.3)$ | 97.3 | $0.70(0.43,0.98)$ |
| Cataracts referred for surgery | $9\left(\begin{array}{l}\|l\|\end{array}\right.$ |  |  |  |
| Glaucoma and glaucoma suspect | $40(26.7)$ | $28(18.7)$ | 89.3 | $0.70(0.56,0.83)$ |
| Macular degeneration | $1(0.7)$ | $0(0.0)$ | 99.3 | $*$ |
| Diabetic retinopathy | $4(2.7)$ | $3(2.0)$ | 98.0 | $0.56(0.12,1.00)$ |
| Any diagnosis resulting in referral | $71(47.3)$ | $58(38.7)$ | 70.0 | $0.39(0.25,0.54)$ |
| Reader 2 |  |  |  |  |
| Cataracts referred for surgery | $8(5.3)$ | $8(5.3)$ | 98.7 | $0.87(0.69,1.00)$ |
| Glaucoma and glaucoma suspect | $21(14.0)$ | $34(22.7)$ | 90.0 | $0.67(0.52,0.82)$ |
| Macular degeneration | $6(4.0)$ | $4(2.7)$ | 97.3 | $0.59(0.22,0.95)$ |
| Diabetic retinopathy | $3(2.0)$ | $3(2.0)$ | 98.7 | $0.66(0.22,1.00)$ |
| Any diagnosis resulting in referral | $84(56.0)$ | $89(59.3)$ | 84.7 | $0.69(0.57,0.80)$ |

*Kappa statistic not calculated because of zero cells

Table 5: Comparison of TECS Protocol with other Telehealth Studies

| Diagnosis | Percent Agreement | Kappa (95\% CI) | Sensitivity (95\% CI) | Specificity (95\% CI) |
| :---: | :---: | :---: | :---: | :---: |
| Cataract |  |  |  |  |
| TECS (Reader 1 and Reader 2) | $\begin{aligned} & 97.7 \\ & 97.3 \end{aligned}$ | $\begin{aligned} & 0.77(0.57,0.94) \\ & 0.71(0.50,0.91) \end{aligned}$ | $0.641 .00(0.6935$, $1.000 .86)$ $(0.5632,0.84 \underline{1.00})$ | $0.98(0.95$, $\frac{0.99) 1.00(0.99,}{1.00)} 0.98(0.95$, $\frac{0.99) 1.00(0.98,}{1.00)}$ |
| Gupta ${ }^{13}$ | 93.0 | 0.68 | 0.98 (0.89, 0.99) | 0.63 (0.26, 0.90) |
| Conlin ${ }^{14}$ | 99.0 | 0.71 |  |  |
| Macular Degeneration |  |  |  |  |
| TECS (Reader 1 and Reader 2) | $\begin{aligned} & 98.1 \\ & 94.5 \end{aligned}$ | $\begin{aligned} & 0.54(0.18,0.90) \\ & 0.34(0.08,0.60) \end{aligned}$ | $\begin{gathered} 0.50(0.12, \\ 0.88) 0.60(0.15, \\ 0.95) \\ 0.67(0.22, \\ 0.96) 0.25(0.07, \\ 0.52) \end{gathered}$ | $\begin{gathered} 0.99(0.97,1.00) \\ \frac{0.95(0.92}{0.98) 0.99(0.97} \\ 1.00) \end{gathered}$ |
| Pirbhai ${ }^{15}$ | 80.0 | 0.59 (0.49, 0.70) | 0.82 (0.72, 0.90) | 0.79 (0.71, 0.86) |
| Duchin ${ }^{16}$ |  |  | 0.84 | 0.94 |
| Conlin ${ }^{14}$ | 97.0 | 0.59 | 0.67 (0.31, 0.91) | 0.98 (0.96, 0.99) |
| Diabetic Retinopathy |  |  |  |  |
| TECS (Reader 1 and Reader 2) | $\begin{aligned} & \hline 98.4 \\ & 97.7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.74(0.50,0.99) \\ & 0.61(0.33,0.90) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.75(0.35,0.97) \\ & 0.63(0.25,0.92) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.99(0.97,1.00) \\ & 0.99(0.97,1.00) \\ & \hline \end{aligned}$ |
| Cavallerano ${ }^{18}$ | 89.3 |  |  |  |
| Gomez-Ulla ${ }^{19}$ | 94.0 | 0.92 (0.90, 0.95) |  |  |
| Kerr ${ }^{17}$ | 82.0-94.0 | 0.64 |  |  |
| Conlin ${ }^{14}$ | 97.0 | 0.68 | 0.75 (0.42, 0.93) | 0.98 (0.96, 0.99) |
| Glaucoma and glaucoma suspect |  |  |  |  |
| TECS (Reader 1 and Reader 2) | $\begin{aligned} & 86.3 \\ & 84.3 \end{aligned}$ | $\begin{aligned} & 0.65(0.54,0.75) \\ & 0.52(0.40,0.64) \end{aligned}$ | $\begin{gathered} 0.72(0.60, \\ 0.82) 0.75(0.63, \\ 0.85) \end{gathered}$ | $\begin{gathered} 0.91(0.87, \\ 0.95) 0.90(0.85, \\ 0.94) \end{gathered}$ |


|  |  |  | $\begin{gathered} 0.47(0.35 \\ 0.60) 0.87(0.71 \\ 0.96) \\ \hline \end{gathered}$ | $\begin{gathered} 0.97(0.94, \\ 0.99) 0.84(0.78 \\ 0.88) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Thomas ${ }^{20}$ |  |  | 0.83 | 0.79 |
| Conlin ${ }^{14}$ | 94.0 | 0.80 | 0.83 (0.71, 0.91) | 0.96 (0.92, 0.98) |
| Gupta ${ }^{13}$ | 67.0 | 0.52 | 0.72 (0.57, 0.83) | 0.81 (0.47, 0.97) |
| Any Disease |  |  |  |  |
| TECS (Reader 1 and Reader 2) | $\begin{gathered} 75.0 \\ 6.4 \end{gathered}$ | $\begin{aligned} & 0.51(0.40,0.61) \\ & 0.38(0.27,0.49) \end{aligned}$ | $\begin{gathered} \frac{0.77(0.68,0.84)}{0.81(0.73,} \\ 0.88) \theta .70(0.61, \\ 0.78) \\ 0.60(0.52,0.68) \end{gathered}$ | $\begin{gathered} 0.74(0.66, \\ 0.81) 0.81(0.73, \\ 0.87) \\ 0.58(0.50, \\ 0.66) 0.80(0.71, \\ 0.87) \end{gathered}$ |
| Sperduto ${ }^{26}$ | 71.0 | 0.61 (0.43, 0.78) |  |  |
| Conlin ${ }^{14}$ | 84.0 | 0.67 | 0.86 (0.77, 0.92) | 0.84 (0.78, 0.88) |

Table 5: Comparison of TECS Protocol with other Telehealth Studies

| Diagnosis | Percent Agreement | Kappa (95\% CI) | Sensitivity (95\% CI) | Specificity (95\% CI) |
| :---: | :---: | :---: | :---: | :---: |
| Cataract |  |  |  |  |
| TECS (Reader 1 and Reader 2) | 97.7 | 0.77 (0.57, 0.94) | 1.00 (0.69, 1.00) | 0.98 (0.95, 0.99) |
|  | 97.3 | 0.71 (0.50, 0.91) | 0.90 (0.56, 1.00) | 0.98 (0.95, 0.99) |
| Gupta ${ }^{13}$ | 93.0 | 0.68 | 0.98 (0.89, 0.99) | 0.63 (0.26, 0.90) |
| Conlin ${ }^{14}$ | 99.0 | 0.71 |  |  |
| Macular Degeneration |  |  |  |  |
| TECS (Reader 1 and Reader 2) | 98.1 | 0.54 (0.18, 0.90) | 0.50 (0.12, 0.88) | 0.99 (0.97, 1.00) |
|  | 94.5 | 0.34 (0.08, 0.60) | 0.67 (0.22, 0.96) | 0.95 (0.92, 0.98) |
| Pirbhai ${ }^{15}$ | 80.0 | 0.59 (0.49, 0.70) | 0.82 (0.72, 0.90) | 0.79 (0.71, 0.86) |
| Duchin ${ }^{16}$ |  |  | 0.84 | 0.94 |
| Conlin ${ }^{14}$ | 97.0 | 0.59 | 0.67 (0.31, 0.91) | 0.98 (0.96, 0.99) |
| Diabetic Retinopathy |  |  |  |  |
| TECS (Reader 1 and Reader 2) | 98.4 | 0.74 (0.50, 0.99) | 0.75 (0.35, 0.97) | 0.99 (0.97, 1.00) |
|  | 97.7 | 0.61 (0.33, 0.90) | 0.63 (0.25, 0.92) | 0.99 (0.97, 1.00) |
| Cavallerano ${ }^{18}$ | 89.3 |  |  |  |
| Gomez-Ulla ${ }^{19}$ | 94.0 | 0.92 (0.90, 0.95) |  |  |
| Kerr ${ }^{17}$ | 82.0-94.0 | 0.64 |  |  |
| Conlin ${ }^{14}$ | 97.0 | 0.68 | 0.75 (0.42, 0.93) | 0.98 (0.96, 0.99) |
| Glaucoma and glaucoma suspect |  |  |  |  |
| TECS (Reader 1 and Reader 2) | 86.3 | 0.65 (0.54, 0.75) | 0.72 (0.60, 0.82) | 0.91 (0.87, 0.95) |
|  | 84.3 | 0.52 (0.40, 0.64) | 0.47 (0.35, 0.60) | 0.97 (0.94, 0.99) |
| Thomas ${ }^{20}$ |  |  | 0.83 | 0.79 |
| Conlin ${ }^{14}$ | 94.0 | 0.80 | 0.83 (0.71, 0.91) | 0.96 (0.92, 0.98) |
| Gupta ${ }^{13}$ | 67.0 | 0.52 | 0.72 (0.57, 0.83) | 0.81 (0.47, 0.97) |
| Any Disease |  |  |  |  |
| TECS (Reader 1 and Reader 2) | 75.0 | 0.51 (0.40, 0.61) | 0.77 (0.68, 0.84) | 0.74 (0.66, 0.81) |
|  | 6.4 | 0.38 (0.27, 0.49) | 0.81 (0.73, 0.88) | 0.58 (0.50, 0.66) |


| Sperduto $^{26}$ | 71.0 | $0.61(0.43,0.78)$ |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Conlin $^{14}$ | 84.0 | 0.67 | $0.86(0.77,0.92)$ | $0.84(0.78,0.88)$ |

## ICMJE Form for Disclosure of Potential Conflicts of Interest

## Instructions

Ine purpose
influence how they receive and understand your work. The form is designed to be completed electronically and stored electronically. It contains programming that allows appropriate data display. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in six parts. dentifying information.
The work under consideration for publication.
This section asks for information about the work that you have submitted for publication. The time frame for this reporting is that of the work itself, from the initial conception and planning to the present. The requested information is about resources that you received, either directly or indirectly (via your institution), to enable you to complete the work. Checking "No" means that you did the work without receiving any financial support from any third party -- that is, the work was supported by funds from the same institution that pays your salary and that institution did not receive third-party funds with which to pay you. If you or your institution received funds

## from a third party to support the wark, such as a government granting agency, charitable foundation or commercial sponsor, check "Yes"

Relevant financial activities outside the submitted work.
This section asks about your financial relationships with entities in the bio-medical arena that could be perceived to influence, or that give the appearance of potentially influencing, what you wrote in the submitted work. You should disclose interactions with ANY entity that could be considered broadly relevant to the work. For example, if your article is about testing an epidermal growth factor receptor (EGFR) antagonist in lung cancer, you should report all associations with entities pursuing diagnostic or therapeutic strategies in cancer in general, not just in the area of EGFR or lung cancer.
Report all sources of revenue paid (or promised to be paid) directly to you or your institution on your behalf over the 36 months prior to submission of the work. This should include all monies from sources with relevance to the submitted work, not just monies from the entity that sponsored the research. Please note that your interactions with the work's sponsor that are outside the submitted work should also be listed here. If there is any question, it is usually better to disclose a relationship than not to do so.
For grants you have received for work outside the submitted work, you should disclose support ONLY from entities that could be perceived to be affected financially by the published work, such as drug companies, or foundations supported by entities that could be perceived to have a financial stake in the outcome. Public funding sources, such as government agencies, charitable foundations or academic institutions, need not be disclosed. For example, if a government agency sponsored a study in which you have been involved and drups were provided by a pharmaceutical company, you need only list the pharmaceutical company.
intellectual property.
This section ask about patents and copyrights whether pending, issued, licensed and/or receiving royalties.
Refationships not covered above.
Use this section to report other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work.

## Definitions.

Entity: government agency, foundation, commercial sponsor, academic institution, etc.
Grant: A grant from an entity, generally [but not always] paid to your organization
Personal Fees: Monies paid to you for services rendered, generally honoraria, royalties, or fees for consulting , lectures, speakers bureaus, expert testimony, employment, or other affiliations
Non-Financial Support: Examples include drugs/equipment supplied by the entity, travel paid by the entity, writing assistance, administrative support, etc.

Other: Anything not covered under the previous three boxes Pending: The patent has been filed but not issued Issued: The patent has been issued by the agency

## Licensed:

The patent has been licensed to an entity, whether earning royalties or not
Royalties:Funds are coming in to you or your institution due to your patent

## ICMJE Form for Disclosure of Potential Conflicts of Interest

## Section 1.

## Identifying Information

1．Given Name（First Name）
＾nu：I
2．Surname（Last Name）
n＾－
Yes No

5．Manuscript Title

6．Manuscript Identifying Number（if you know it）
ヘロபтயクロィロ ィフィ

## Section 2. <br> The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party（government，commercial，private foundation，etc．）for any aspect of the submitted work（including but not limited to grants，data monitoring board，study design，manuscript preparation， statistical analysis，etc．）？
Are there any relevant conflicts of interest？ $\square$ Yes

## Section 3.

## Relevant financial activities outside the submitted work．

Place a check in the appropriate boxes in the table to indicate whether you have financial relationships（regardless of amount of compensation）with entities as described in the instructions．Use one line for each entity；add as many lines as you need by clicking the＂Add＋＂box．You should report relationships that were present during the $\mathbf{3 6}$ months prior to publication．

Are there any relevant conflicts of interest？ $\square$ Yes

## Section 4.

## Intellectual Property－－Patents \＆Copyrights

Do you have any patents，whether planned，pending or issued，broadly relevant to the work？ $\square$ Yes No

## Section 5.

## Relationships not covered above

Are there other relationships or activities that readers could perceive to have influenced，or that give the appearance of potentially influencing，what you wrote in the submitted work？
$\square$ Yes，the following relationships／conditions／circumstances are present（explain below）：
$\checkmark$ No other relationships／conditions／circumstances that present a potential conflict of interest

## ICMJE Form for Disclosure of Potential Conflicts of Interest

At the time of manuscript acceptance, journals will ask authors to confirm and, if necessary, update their disclosure statements. On occasion, journals may ask authors to disclose further information about reported relationships.

## Section 6. Disclosure Statement

Based on the above disclosures, this form will automatically generate a disclosure statement, which will appear in the box below.

## Generate Disclosure Statement

## Evaluation and Feedback

Please visit http://www.icmje.org/cgi-bin/feedback to provide feedback on your experience with completing this form.

## ICMJE Form for Disclosure of Potential Conflicts of Interest

## Instructions

Ine purpose
influence how they receive and understand your work. The form is designed to be completed electronically and stored electronically. It contains programming that allows appropriate data display. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in six parts. dentifying information.
The work under consideration for publication.
This section asks for information about the work that you have submitted for publication. The time frame for this reporting is that of the work itself, from the initial conception and planning to the present. The requested information is about resources that you received, either directly or indirectly (via your institution), to enable you to complete the work. Checking "No" means that you did the work without receiving any financial support from any third party -- that is, the work was supported by funds from the same institution that pays your salary and that institution did not receive third-party funds with which to pay you. If you or your institution received funds

## from a third party to support the work, such as a government granting agency charitable foundation or commercial sponsor, check "Yes"

Relevant financial activities outside the submitted work.
This section asks about your financial relationships with entities in the bio-medical arena that could be perceived to influence, or that give the appearance of potentially influencing, what you wrote in the submitted work. You should disclose interactions with ANY entity that could be considered broadly relevant to the work. For example, if your article is about testing an epidermal growth factor receptor (EGFR) antagonist in lung cancer, you should report all associations with entities pursuing diagnostic or therapeutic strategies in cancer in general, not just in the area of EGFR or lung cancer.
Report all sources of revenue paid (or promised to be paid) directly to you or your institution on your behalf over the 36 months prior to submission of the work. This should include all monies from sources with relevance to the submitted work, not just monies from the entity that sponsored the research. Please note that your interactions with the work's sponsor that are outside the submitted work should also be listed here. If there is any question, it is usually better to disclose a relationship than not to do so.
For grants you have received for work outside the submitted work, you should disclose support ONLY from entities that could be perceived to be affected financially by the published work, such as drug companies, or foundations supported by entities that could be perceived to have a financial stake in the outcome. Public funding sources, such as government agencies, charitable foundations or academic institutions, need not be disclosed. For example, if a government agency sponsored a study in which you have been involved and drups were provided by a pharmaceutical company, you need only list the pharmaceutical company.
intellectual property.
This section ask about patents and copyrights whether pending, issued, licensed and/or receiving royalties.
Refationships not covered above.
Use this section to report other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work.

## Definitions.

Entity: government agency, foundation, commercial sponsor, academic institution, etc.
Grant: A grant from an entity, generally [but not always] paid to your organization
Personal Fees: Monies paid to you for services rendered, generally honoraria, royalties, or fees for consulting, lectures, speakers bureaus, expert testimony, employment, or other affiliations
Non-Financial Support: Examples include drugs/equipment supplied by the entity, travel paid by the entity, writing assistance, administrative support, etc.

Other: Anything not covered under the previous three boxes Pending: The patent has been filed but not issued Issued: The patent has been issued by the agency

## Licensed:

The patent has been licensed to an entity, whether earning royalties or not
Royalties:Funds are coming in to you or your institution due to your patent

## ICMJE Form for Disclosure of Potential Conflicts of Interest

## Section 1.

## Identifying Information

1．Given Name（First Name）
AMINICTTL $\qquad$

2．Surname（Last Name）

「ınмiriñのnиの

3．Date

く11ィフワก1ロ

4．Are you the corresponding author？Yes

5．Manuscript Title

6．Manuscript Identifying Number（if you know it）
คロபтயクロイロ ィフィ

## Section 2. <br> The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party（government，commercial，private foundation，etc．）for any aspect of the submitted work（including but not limited to grants，data monitoring board，study design，manuscript preparation， statistical analysis，etc．）？
Are there any relevant conflicts of interest？ $\square$ Yes

## Section 3.

## Relevant financial activities outside the submitted work．

Place a check in the appropriate boxes in the table to indicate whether you have financial relationships（regardless of amount of compensation）with entities as described in the instructions．Use one line for each entity；add as many lines as you need by clicking the＂Add＋＂box．You should report relationships that were present during the $\mathbf{3 6}$ months prior to publication．

Are there any relevant conflicts of interest？ $\square$ Yes

## Section 4.

## Intellectual Property－－Patents \＆Copyrights

Do you have any patents，whether planned，pending or issued，broadly relevant to the work？ $\square$ Yes $\checkmark$ No

## Section 5.

## Relationships not covered above

Are there other relationships or activities that readers could perceive to have influenced，or that give the appearance of potentially influencing，what you wrote in the submitted work？
$\square$ Yes，the following relationships／conditions／circumstances are present（explain below）：
$\checkmark$ No other relationships／conditions／circumstances that present a potential conflict of interest

## ICMJE Form for Disclosure of Potential Conflicts of Interest

At the time of manuscript acceptance, journals will ask authors to confirm and, if necessary, update their disclosure statements. On occasion, journals may ask authors to disclose further information about reported relationships.

## Section 6. Disclosure Statement

Based on the above disclosures, this form will automatically generate a disclosure statement, which will appear in the box below.

## Generate Disclosure Statement

## Evaluation and Feedback

Please visit http://www.icmje.org/cgi-bin/feedback to provide feedback on your experience with completing this form.

## ICMJE Form for Disclosure of Potential Conflicts of Interest

## Instructions

Ine purpose
influence how they receive and understand your work. The form is designed to be completed electronically and stored electronically. It contains programming that allows appropriate data display. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in six parts. dentifying information.
The work under consideration for publication.
This section asks for information about the work that you have submitted for publication. The time frame for this reporting is that of the work itself, from the initial conception and planning to the present. The requested information is about resources that you received, either directly or indirectly (via your institution), to enable you to complete the work. Checking "No" means that you did the work without receiving any financial support from any third party -- that is, the work was supported by funds from the same institution that pays your salary and that institution did not receive third-party funds with which to pay you. If you or your institution received funds

## from a third party to support the work, such as a government granting agency charitable foundation or commercial sponsor, check "Yes"

Relevant financial activities outside the submitted work.
This section asks about your financial relationships with entities in the bio-medical arena that could be perceived to influence, or that give the appearance of potentially influencing, what you wrote in the submitted work. You should disclose interactions with ANY entity that could be considered broadly relevant to the work. For example, if your article is about testing an epidermal growth factor receptor (EGFR) antagonist in lung cancer, you should report all associations with entities pursuing diagnostic or therapeutic strategies in cancer in general, not just in the area of EGFR or lung cancer.
Report all sources of revenue paid (or promised to be paid) directly to you or your institution on your behalf over the 36 months prior to submission of the work. This should include all monies from sources with relevance to the submitted work, not just monies from the entity that sponsored the research. Please note that your interactions with the work's sponsor that are outside the submitted work should also be listed here. If there is any question, it is usually better to disclose a relationship than not to do so.
For grants you have received for work outside the submitted work, you should disclose support ONLY from entities that could be perceived to be affected financially by the published work, such as drug companies, or foundations supported by entities that could be perceived to have a financial stake in the outcome. Public funding sources, such as government agencies, charitable foundations or academic institutions, need not be disclosed. For example, if a government agency sponsored a study in which you have been involved and drups were provided by a pharmaceutical company, you need only list the pharmaceutical company.
intellectual property.
This section ask about patents and copyrights whether pending, issued, licensed and/or receiving royalties.
Relationships not covered above.
Use this section to report other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work.

## Definitions.

Entity: government agency, foundation, commercial sponsor, academic institution, etc.
Grant: A grant from an entity, generally [but not always] paid to your organization
Personal Fees: Monies paid to you for services rendered, generally honoraria, royalties, or fees for consulting , lectures, speakers bureaus, expert testimony, employment, or other affiliations
Non-Financial Support: Examples include drugs/equipment supplied by the entity, travel paid by the entity, writing assistance, administrative support, etc.

Other: Anything not covered under the previous three boxes Pending: The patent has been filed but not issued Issued: The patent has been issued by the agency

## Licensed:

The patent has been licensed to an entity, whether earning royalties or not
Royalties:Funds are coming in to you or your institution due to your patent

## ICMJE Form for Disclosure of Potential Conflicts of Interest

## Section 1.

## Identifying Information

1．Given Name（First Name）

## 2．Surname（Last Name）

En．．．．．ll

4．Are you the corresponding author？

5．Manuscript Title

6．Manuscript Identifying Number（if you know it）
ヘロபтu クロッロ ィフィ

## Section 2. <br> The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party（government，commercial，private foundation，etc．）for any aspect of the submitted work（including but not limited to grants，data monitoring board，study design，manuscript preparation， statistical analysis，etc．）？
Are there any relevant conflicts of interest？ $\square$ Yes

## Section 3.

## Relevant financial activities outside the submitted work．

Place a check in the appropriate boxes in the table to indicate whether you have financial relationships（regardless of amount of compensation）with entities as described in the instructions．Use one line for each entity；add as many lines as you need by clicking the＂Add＋＂box．You should report relationships that were present during the $\mathbf{3 6}$ months prior to publication．

Are there any relevant conflicts of interest？ $\square$ Yes

## Section 4.

## Intellectual Property－－Patents \＆Copyrights

Do you have any patents，whether planned，pending or issued，broadly relevant to the work？ $\square$ Yes $\checkmark$ No

## Section 5.

## Relationships not covered above

Are there other relationships or activities that readers could perceive to have influenced，or that give the appearance of potentially influencing，what you wrote in the submitted work？
$\square$ Yes，the following relationships／conditions／circumstances are present（explain below）：
$\checkmark$ No other relationships／conditions／circumstances that present a potential conflict of interest

## ICMJE Form for Disclosure of Potential Conflicts of Interest

At the time of manuscript acceptance, journals will ask authors to confirm and, if necessary, update their disclosure statements. On occasion, journals may ask authors to disclose further information about reported relationships.

## Section 6. Disclosure Statement

Based on the above disclosures, this form will automatically generate a disclosure statement, which will appear in the box below.

## Generate Disclosure Statement

## Evaluation and Feedback

Please visit http://www.icmje.org/cgi-bin/feedback to provide feedback on your experience with completing this form.

## ICMJE Form for Disclosure of Potential Conflicts of Interest

## Instructions

Ine purpose
influence how they receive and understand your work. The form is designed to be completed electronically and stored electronically. It contains programming that allows appropriate data display. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in six parts. dentifying information.
The work under consideration for publication.
This section asks for information about the work that you have submitted for publication. The time frame for this reporting is that of the work itself, from the initial conception and planning to the present. The requested information is about resources that you received, either directly or indirectly (via your institution), to enable you to complete the work. Checking "No" means that you did the work without receiving any financial support from any third party -- that is, the work was supported by funds from the same institution that pays your salary and that institution did not receive third-party funds with which to pay you. If you or your institution received funds

## from a third party to support the wark, such as a government granting agency, charitable foundation or commercial sponsor, check "Yes"

Relevant financial activities outside the submitted work.
This section asks about your financial relationships with entities in the bio-medical arena that could be perceived to influence, or that give the appearance of potentially influencing, what you wrote in the submitted work. You should disclose interactions with ANY entity that could be considered broadly relevant to the work. For example, if your article is about testing an epidermal growth factor receptor (EGFR) antagonist in lung cancer, you should report all associations with entities pursuing diagnostic or therapeutic strategies in cancer in general, not just in the area of EGFR or lung cancer.
Report all sources of revenue paid (or promised to be paid) directly to you or your institution on your behalf over the 36 months prior to submission of the work. This should include all monies from sources with relevance to the submitted work, not just monies from the entity that sponsored the research. Please note that your interactions with the work's sponsor that are outside the submitted work should also be listed here. If there is any question, it is usually better to disclose a relationship than not to do so.
For grants you have received for work outside the submitted work, you should disclose support ONLY from entities that could be perceived to be affected financially by the published work, such as drug companies, or foundations supported by entities that could be perceived to have a financial stake in the outcome. Public funding sources, such as government agencies, charitable foundations or academic institutions, need not be disclosed. For example, if a government agency sponsored a study in which you have been involved and drups were provided by a pharmaceutical company, you need only list the pharmaceutical company.
intellectual property.
This section ask about patents and copyrights whether pending, issued, licensed and/or receiving royalties.
Refationships not covered above.
Use this section to report other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work.

## Definitions.

Entity: government agency, foundation, commercial sponsor, academic institution, etc.
Grant: A grant from an entity, generally [but not always] paid to your organization
Personal Fees: Monies paid to you for services rendered, generally honoraria, royalties, or fees for consulting , lectures, speakers bureaus, expert testimony, employment, or other affiliations
Non-Financial Support: Examples include drugs/equipment supplied by the entity, travel paid by the entity, writing assistance, administrative support, etc.

Other: Anything not covered under the previous three boxes Pending: The patent has been filed but not issued Issued: The patent has been issued by the agency

## Licensed:

The patent has been licensed to an entity, whether earning royalties or not
Royalties:Funds are coming in to you or your institution due to your patent

## ICMJE Form for Disclosure of Potential Conflicts of Interest

## Section 1.

## Identifying Information



2．Surname（Last Name）
I．．
$\square$ Yes $\quad \boldsymbol{V}$

4．Are you the corresponding author？

5．Manuscript Title

6．Manuscript Identifying Number（if you know it）
คロபтயクロイロ ィフィ

## Section 2. <br> The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party（government，commercial，private foundation，etc．）for any aspect of the submitted work（including but not limited to grants，data monitoring board，study design，manuscript preparation， statistical analysis，etc．）？
Are there any relevant conflicts of interest？ $\square$ Yes

## Section 3.

## Relevant financial activities outside the submitted work．

Place a check in the appropriate boxes in the table to indicate whether you have financial relationships（regardless of amount of compensation）with entities as described in the instructions．Use one line for each entity；add as many lines as you need by clicking the＂Add＋＂box．You should report relationships that were present during the $\mathbf{3 6}$ months prior to publication．

Are there any relevant conflicts of interest？ $\square$ Yes

## Section 4.

## Intellectual Property－－Patents \＆Copyrights

Do you have any patents，whether planned，pending or issued，broadly relevant to the work？ $\square$ Yes $\checkmark$ No

## Section 5.

## Relationships not covered above

Are there other relationships or activities that readers could perceive to have influenced，or that give the appearance of potentially influencing，what you wrote in the submitted work？
$\square$ Yes，the following relationships／conditions／circumstances are present（explain below）：
$\checkmark$ No other relationships／conditions／circumstances that present a potential conflict of interest

## ICMJE Form for Disclosure of Potential Conflicts of Interest

At the time of manuscript acceptance, journals will ask authors to confirm and, if necessary, update their disclosure statements. On occasion, journals may ask authors to disclose further information about reported relationships.

## Section 6. Disclosure Statement

Based on the above disclosures, this form will automatically generate a disclosure statement, which will appear in the box below.

## Generate Disclosure Statement

## Evaluation and Feedback

Please visit http://www.icmje.org/cgi-bin/feedback to provide feedback on your experience with completing this form.

## ICMJE Form for Disclosure of Potential Conflicts of Interest

## Instructions

Ine purpose
influence how they receive and understand your work. The form is designed to be completed electronically and stored electronically. It contains programming that allows appropriate data display. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in six parts. dentifying information.
The work under consideration for publication.
This section asks for information about the work that you have submitted for publication. The time frame for this reporting is that of the work itself, from the initial conception and planning to the present. The requested information is about resources that you received, either directly or indirectly (via your institution), to enable you to complete the work. Checking "No" means that you did the work without receiving any financial support from any third party -- that is, the work was supported by funds from the same institution that pays your salary and that institution did not receive third-party funds with which to pay you. If you or your institution received funds

## from a third party to support the wark, such as a government granting agency, charitable foundation or commercial sponsor, check "Yes"

Relevant financial activities outside the submitted work.
This section asks about your financial relationships with entities in the bio-medical arena that could be perceived to influence, or that give the appearance of potentially influencing, what you wrote in the submitted work. You should disclose interactions with ANY entity that could be considered broadly relevant to the work. For example, if your article is about testing an epidermal growth factor receptor (EGFR) antagonist in lung cancer, you should report all associations with entities pursuing diagnostic or therapeutic strategies in cancer in general, not just in the area of EGFR or lung cancer.
Report all sources of revenue paid (or promised to be paid) directly to you or your institution on your behalf over the 36 months prior to submission of the work. This should include all monies from sources with relevance to the submitted work, not just monies from the entity that sponsored the research. Please note that your interactions with the work's sponsor that are outside the submitted work should also be listed here. If there is any question, it is usually better to disclose a relationship than not to do so.
For grants you have received for work outside the submitted work, you should disclose support ONLY from entities that could be perceived to be affected financially by the published work, such as drug companies, or foundations supported by entities that could be perceived to have a financial stake in the outcome. Public funding sources, such as government agencies, charitable foundations or academic institutions, need not be disclosed. For example, if a government agency sponsored a study in which you have been involved and drups were provided by a pharmaceutical company, you need only list the pharmaceutical company.
intellectual property.
This section ask about patents and copyrights whether pending, issued, licensed and/or receiving royalties.
Refationships not covered above.
Use this section to report other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work.

## Definitions.

Entity: government agency, foundation, commercial sponsor, academic institution, etc.
Grant: A grant from an entity, generally [but not always] paid to your organization
Personal Fees: Monies paid to you for services rendered, generally honoraria, royalties, or fees for consulting , lectures, speakers bureaus, expert testimony, employment, or other affiliations
Non-Financial Support: Examples include drugs/equipment supplied by the entity, travel paid by the entity, writing assistance, administrative support, etc.

Other: Anything not covered under the previous three boxes Pending: The patent has been filed but not issued Issued: The patent has been issued by the agency

## Licensed:

The patent has been licensed to an entity, whether earning royalties or not
Royalties:Funds are coming in to you or your institution due to your patent

## ICMJE Form for Disclosure of Potential Conflicts of Interest

## Section 1.

## Identifying Information

1．Given Name（First Name）

## 2．Surname（Last Name）

1．．．n－h

5．Manuscript Title

6．Manuscript Identifying Number（if you know it）
ヘロபтபクロイロ ィフィ

## Section 2. <br> The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party（government，commercial，private foundation，etc．）for any aspect of the submitted work（including but not limited to grants，data monitoring board，study design，manuscript preparation， statistical analysis，etc．）？
Are there any relevant conflicts of interest？ $\square$ Yes

## Section 3.

## Relevant financial activities outside the submitted work．

Place a check in the appropriate boxes in the table to indicate whether you have financial relationships（regardless of amount of compensation）with entities as described in the instructions．Use one line for each entity；add as many lines as you need by clicking the＂Add＋＂box．You should report relationships that were present during the $\mathbf{3 6}$ months prior to publication．

Are there any relevant conflicts of interest？ $\square$ Yes

## Section 4.

## Intellectual Property－－Patents \＆Copyrights

Do you have any patents，whether planned，pending or issued，broadly relevant to the work？ $\square$ Yes $\checkmark$ No

## Section 5.

## Relationships not covered above

Are there other relationships or activities that readers could perceive to have influenced，or that give the appearance of potentially influencing，what you wrote in the submitted work？
$\square$ Yes，the following relationships／conditions／circumstances are present（explain below）：
$\checkmark$ No other relationships／conditions／circumstances that present a potential conflict of interest

## ICMJE Form for Disclosure of Potential Conflicts of Interest

At the time of manuscript acceptance, journals will ask authors to confirm and, if necessary, update their disclosure statements. On occasion, journals may ask authors to disclose further information about reported relationships.

## Section 6. Disclosure Statement

Based on the above disclosures, this form will automatically generate a disclosure statement, which will appear in the box below.

## Generate Disclosure Statement

## Evaluation and Feedback

Please visit http://www.icmje.org/cgi-bin/feedback to provide feedback on your experience with completing this form.

## ICMJE Form for Disclosure of Potential Conflicts of Interest

## Instructions

Ine purpose
influence how they receive and understand your work. The form is designed to be completed electronically and stored electronically. It contains programming that allows appropriate data display. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in six parts. dentifying information.
The work under consideration for publication.
This section asks for information about the work that you have submitted for publication. The time frame for this reporting is that of the work itself, from the initial conception and planning to the present. The requested information is about resources that you received, either directly or indirectly (via your institution), to enable you to complete the work. Checking "No" means that you did the work without receiving any financial support from any third party -- that is, the work was supported by funds from the same institution that

## pays your salary and that institution did not receive third-party funds with which to pay you. If you or your institution received funds <br> from a third party to support the work, such as a government granting agency charitable foundation or commercial sponsor, check "Yes"

Relevant financial activities outside the submitted work.
This section asks about your financial relationships with entities in the bio-medical arena that could be perceived to influence, or that give the appearance of potentially influencing, what you wrote in the submitted work. You should disclose interactions with ANY entity that could be considered broadly relevant to the work. For example, if your article is about testing an epidermal growth factor receptor (EGFR) antagonist in lung cancer, you should report all associations with entities pursuing diagnostic or therapeutic strategies in cancer in general, not just in the area of EGFR or lung cancer.
Report all sources of revenue paid (or promised to be paid) directly to you or your institution on your behalf over the 36 months prior to submission of the work. This should include all monies from sources with relevance to the submitted work, not just monies from the entity that sponsored the research. Please note that your interactions with the work's sponsor that are outside the submitted work should also be listed here. If there is any question, it is usually better to disclose a relationship than not to do so.
For grants you have received for work outside the submitted work, you should disclose support ONLY from entities that could be perceived to be affected financially by the published work, such as drug companies, or foundations supported by entities that could be perceived to have a financial stake in the outcome. Public funding sources, such as government agencies, charitable foundations or academic institutions, need not be disclosed. For example, if a government agency sponsored a study in which you have been involved and drups were provided by a pharmaceutical company, you need only list the pharmaceutical company.
intellectual property.
This section ask about patents and copyrights whether pending, issued, licensed and/or receiving royalties.
Relationships not covered above.
Use this section to report other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work.

## Definitions.

Entity: government agency, foundation, commercial sponsor, academic institution, etc.
Grant: A grant from an entity, generally [but not always] paid to your organization
Personal Fees: Monies paid to you for services rendered, generally honoraria, royalties, or fees for consulting , lectures, speakers bureaus, expert testimony, employment, or other affiliations
Non-Financial Support: Examples include drugs/equipment supplied by the entity, travel paid by the entity, writing assistance, administrative support, etc.

Other: Anything not covered under the previous three boxes Pending: The patent has been filed but not issued Issued: The patent has been issued by the agency

## Licensed:

The patent has been licensed to an entity, whether earning royalties or not
Royalties:Funds are coming in to you or your institution due to your patent

## ICMJE Form for Disclosure of Potential Conflicts of Interest

## Section 1.

## Identifying Information



2．Surname（Last Name）
n Mーrand


4．Are you the corresponding author？

5．Manuscript Title

6．Manuscript Identifying Number（if you know it）
คロபтயクロイロ ィフィ

## Section 2. <br> The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party（government，commercial，private foundation，etc．）for any aspect of the submitted work（including but not limited to grants，data monitoring board，study design，manuscript preparation， statistical analysis，etc．）？
Are there any relevant conflicts of interest？ $\square$ Yes

## Section 3.

## Relevant financial activities outside the submitted work．

Place a check in the appropriate boxes in the table to indicate whether you have financial relationships（regardless of amount of compensation）with entities as described in the instructions．Use one line for each entity；add as many lines as you need by clicking the＂Add＋＂box．You should report relationships that were present during the $\mathbf{3 6}$ months prior to publication．

Are there any relevant conflicts of interest？ $\square$ Yes

## Section 4.

## Intellectual Property－－Patents \＆Copyrights

Do you have any patents，whether planned，pending or issued，broadly relevant to the work？ $\square$ Yes $\checkmark$ No

## Section 5.

## Relationships not covered above

Are there other relationships or activities that readers could perceive to have influenced，or that give the appearance of potentially influencing，what you wrote in the submitted work？
$\square$ Yes，the following relationships／conditions／circumstances are present（explain below）：
$\checkmark$ No other relationships／conditions／circumstances that present a potential conflict of interest

## ICMJE Form for Disclosure of Potential Conflicts of Interest

At the time of manuscript acceptance, journals will ask authors to confirm and, if necessary, update their disclosure statements. On occasion, journals may ask authors to disclose further information about reported relationships.

## Section 6. Disclosure Statement

Based on the above disclosures, this form will automatically generate a disclosure statement, which will appear in the box below.

## Generate Disclosure Statement

## Evaluation and Feedback

Please visit http://www.icmje.org/cgi-bin/feedback to provide feedback on your experience with completing this form.

## ICMJE Form for Disclosure of Potential Conflicts of Interest

## Instructions

Ine purpose
influence how they receive and understand your work. The form is designed to be completed electronically and stored electronically. It contains programming that allows appropriate data display. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in six parts. dentifying information.
The work under consideration for publication.
This section asks for information about the work that you have submitted for publication. The time frame for this reporting is that of the work itself, from the initial conception and planning to the present. The requested information is about resources that you received, either directly or indirectly (via your institution), to enable you to complete the work. Checking "No" means that you did the work without receiving any financial support from any third party -- that is, the work was supported by funds from the same institution that pays your salary and that institution did not receive third-party funds with which to pay you. If you or your institution received funds

## from a third party to support the work, such as a government granting agency charitable foundation or commercial sponsor, check "Yes"

Relevant financial activities outside the submitted work.
This section asks about your financial relationships with entities in the bio-medical arena that could be perceived to influence, or that give the appearance of potentially influencing, what you wrote in the submitted work. You should disclose interactions with ANY entity that could be considered broadly relevant to the work. For example, if your article is about testing an epidermal growth factor receptor (EGFR) antagonist in lung cancer, you should report all associations with entities pursuing diagnostic or therapeutic strategies in cancer in general, not just in the area of EGFR or lung cancer.
Report all sources of revenue paid (or promised to be paid) directly to you or your institution on your behalf over the 36 months prior to submission of the work. This should include all monies from sources with relevance to the submitted work, not just monies from the entity that sponsored the research. Please note that your interactions with the work's sponsor that are outside the submitted work should also be listed here. If there is any question, it is usually better to disclose a relationship than not to do so.
For grants you have received for work outside the submitted work, you should disclose support ONLY from entities that could be perceived to be affected financially by the published work, such as drug companies, or foundations supported by entities that could be perceived to have a financial stake in the outcome. Public funding sources, such as government agencies, charitable foundations or academic institutions, need not be disclosed. For example, if a government agency sponsored a study in which you have been involved and drups were provided by a pharmaceutical company, you need only list the pharmaceutical company.
intellectual property.
This section ask about patents and copyrights whether pending, issued, licensed and/or receiving royalties.
Refationships not covered above.
Use this section to report other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work.

## Definitions.

Entity: government agency, foundation, commercial sponsor, academic institution, etc.
Grant: A grant from an entity, generally [but not always] paid to your organization
Personal Fees: Monies paid to you for services rendered, generally honoraria, royalties, or fees for consulting , lectures, speakers bureaus, expert testimony, employment, or other affiliations
Non-Financial Support: Examples include drugs/equipment supplied by the entity, travel paid by the entity, writing assistance, administrative support, etc.

Other: Anything not covered under the previous three boxes Pending: The patent has been filed but not issued Issued: The patent has been issued by the agency

## Licensed:

The patent has been licensed to an entity, whether earning royalties or not
Royalties:Funds are coming in to you or your institution due to your patent

## ICMJE Form for Disclosure of Potential Conflicts of Interest

## Section 1.

## Identifying Information



2．Surname（Last Name）
n！nalant


4．Are you the corresponding author？

5．Manuscript Title

6．Manuscript Identifying Number（if you know it）
คロபтயクロイロ ィフィ

## Section 2. <br> The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party（government，commercial，private foundation，etc．）for any aspect of the submitted work（including but not limited to grants，data monitoring board，study design，manuscript preparation， statistical analysis，etc．）？
Are there any relevant conflicts of interest？ $\square$ Yes

## Section 3.

## Relevant financial activities outside the submitted work．

Place a check in the appropriate boxes in the table to indicate whether you have financial relationships（regardless of amount of compensation）with entities as described in the instructions．Use one line for each entity；add as many lines as you need by clicking the＂Add＋＂box．You should report relationships that were present during the $\mathbf{3 6}$ months prior to publication．

Are there any relevant conflicts of interest？ $\square$ Yes

## Section 4.

## Intellectual Property－－Patents \＆Copyrights

Do you have any patents，whether planned，pending or issued，broadly relevant to the work？ $\square$ Yes $\checkmark$ No

## Section 5.

## Relationships not covered above

Are there other relationships or activities that readers could perceive to have influenced，or that give the appearance of potentially influencing，what you wrote in the submitted work？
$\square$ Yes，the following relationships／conditions／circumstances are present（explain below）：
$\checkmark$ No other relationships／conditions／circumstances that present a potential conflict of interest

## ICMJE Form for Disclosure of Potential Conflicts of Interest

At the time of manuscript acceptance, journals will ask authors to confirm and, if necessary, update their disclosure statements. On occasion, journals may ask authors to disclose further information about reported relationships.

## Section 6. Disclosure Statement

Based on the above disclosures, this form will automatically generate a disclosure statement, which will appear in the box below.

## Generate Disclosure Statement

## Evaluation and Feedback

Please visit http://www.icmje.org/cgi-bin/feedback to provide feedback on your experience with completing this form.

## ICMJE Form for Disclosure of Potential Conflicts of Interest

## Instructions

Ine purpose
influence how they receive and understand your work. The form is designed to be completed electronically and stored electronically. It contains programming that allows appropriate data display. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in six parts. dentifying information.
The work under consideration for publication.
This section asks for information about the work that you have submitted for publication. The time frame for this reporting is that of the work itself, from the initial conception and planning to the present. The requested information is about resources that you received, either directly or indirectly (via your institution), to enable you to complete the work. Checking "No" means that you did the work without receiving any financial support from any third party -- that is, the work was supported by funds from the same institution that pays your salary and that institution did not receive third-party funds with which to pay you. If you or your institution received funds

## from a third party to support the wark, such as a government granting agency, charitable foundation or commercial sponsor, check "Yes"

Relevant financial activities outside the submitted work.
This section asks about your financial relationships with entities in the bio-medical arena that could be perceived to influence, or that give the appearance of potentially influencing, what you wrote in the submitted work. You should disclose interactions with ANY entity that could be considered broadly relevant to the work. For example, if your article is about testing an epidermal growth factor receptor (EGFR) antagonist in lung cancer, you should report all associations with entities pursuing diagnostic or therapeutic strategies in cancer in general, not just in the area of EGFR or lung cancer.
Report all sources of revenue paid (or promised to be paid) directly to you or your institution on your behalf over the 36 months prior to submission of the work. This should include all monies from sources with relevance to the submitted work, not just monies from the entity that sponsored the research. Please note that your interactions with the work's sponsor that are outside the submitted work should also be listed here. If there is any question, it is usually better to disclose a relationship than not to do so.
For grants you have received for work outside the submitted work, you should disclose support ONLY from entities that could be perceived to be affected financially by the published work, such as drug companies, or foundations supported by entities that could be perceived to have a financial stake in the outcome. Public funding sources, such as government agencies, charitable foundations or academic institutions, need not be disclosed. For example, if a government agency sponsored a study in which you have been involved and drups were provided by a pharmaceutical company, you need only list the pharmaceutical company.
intellectual property.
This section ask about patents and copyrights whether pending, issued, licensed and/or receiving royalties.
Refationships not covered above.
Use this section to report other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work.

## Definitions.

Entity: government agency, foundation, commercial sponsor, academic institution, etc.
Grant: A grant from an entity, generally [but not always] paid to your organization
Personal Fees: Monies paid to you for services rendered, generally honoraria, royalties, or fees for consulting , lectures, speakers bureaus, expert testimony, employment, or other affiliations
Non-Financial Support: Examples include drugs/equipment supplied by the entity, travel paid by the entity, writing assistance, administrative support, etc.

Other: Anything not covered under the previous three boxes Pending: The patent has been filed but not issued Issued: The patent has been issued by the agency

## Licensed:

The patent has been licensed to an entity, whether earning royalties or not
Royalties:Funds are coming in to you or your institution due to your patent

## ICMJE Form for Disclosure of Potential Conflicts of Interest

## Section 1.

## Identifying Information

1．Given Name（First Name）
／／II．．

4．Are you the corresponding author？

2．Surname（Last Name）
b．．nt
$\square$ Yes

5．Manuscript Title

6．Manuscript Identifying Number（if you know it）
คロபтயクロイロ ィフィ

## Section 2. <br> The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party（government，commercial，private foundation，etc．）for any aspect of the submitted work（including but not limited to grants，data monitoring board，study design，manuscript preparation， statistical analysis，etc．）？
Are there any relevant conflicts of interest？ $\square$ Yes

## Section 3.

## Relevant financial activities outside the submitted work．

Place a check in the appropriate boxes in the table to indicate whether you have financial relationships（regardless of amount of compensation）with entities as described in the instructions．Use one line for each entity；add as many lines as you need by clicking the＂Add＋＂box．You should report relationships that were present during the $\mathbf{3 6}$ months prior to publication．

Are there any relevant conflicts of interest？ $\square$ Yes

## Section 4.

## Intellectual Property－－Patents \＆Copyrights

Do you have any patents，whether planned，pending or issued，broadly relevant to the work？ $\square$ Yes No

## Section 5.

## Relationships not covered above

Are there other relationships or activities that readers could perceive to have influenced，or that give the appearance of potentially influencing，what you wrote in the submitted work？
$\square$ Yes，the following relationships／conditions／circumstances are present（explain below）：
$\checkmark$ No other relationships／conditions／circumstances that present a potential conflict of interest

## ICMJE Form for Disclosure of Potential Conflicts of Interest

At the time of manuscript acceptance, journals will ask authors to confirm and, if necessary, update their disclosure statements. On occasion, journals may ask authors to disclose further information about reported relationships.

## Section 6. Disclosure Statement

Based on the above disclosures, this form will automatically generate a disclosure statement, which will appear in the box below.

## Generate Disclosure Statement

## Evaluation and Feedback

Please visit http://www.icmje.org/cgi-bin/feedback to provide feedback on your experience with completing this form.

## ICMJE Form for Disclosure of Potential Conflicts of Interest

## Instructions

Ine purpose
influence how they receive and understand your work. The form is designed to be completed electronically and stored electronically. It contains programming that allows appropriate data display. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in six parts. dentifying information.
The work under consideration for publication.
This section asks for information about the work that you have submitted for publication. The time frame for this reporting is that of the work itself, from the initial conception and planning to the present. The requested information is about resources that you received, either directly or indirectly (via your institution), to enable you to complete the work. Checking "No" means that you did the work without receiving any financial support from any third party -- that is, the work was supported by funds from the same institution that pays your salary and that institution did not receive third-party funds with which to pay you. If you or your institution received funds

## from a third party to support the work, such as a government granting agency charitable foundation or commercial sponsor, check "Yes"

Relevant financial activities outside the submitted work.
This section asks about your financial relationships with entities in the bio-medical arena that could be perceived to influence, or that give the appearance of potentially influencing, what you wrote in the submitted work. You should disclose interactions with ANY entity that could be considered broadly relevant to the work. For example, if your article is about testing an epidermal growth factor receptor (EGFR) antagonist in lung cancer, you should report all associations with entities pursuing diagnostic or therapeutic strategies in cancer in general, not just in the area of EGFR or lung cancer.
Report all sources of revenue paid (or promised to be paid) directly to you or your institution on your behalf over the 36 months prior to submission of the work. This should include all monies from sources with relevance to the submitted work, not just monies from the entity that sponsored the research. Please note that your interactions with the work's sponsor that are outside the submitted work should also be listed here. If there is any question, it is usually better to disclose a relationship than not to do so.
For grants you have received for work outside the submitted work, you should disclose support ONLY from entities that could be perceived to be affected financially by the published work, such as drug companies, or foundations supported by entities that could be perceived to have a financial stake in the outcome. Public funding sources, such as government agencies, charitable foundations or academic institutions, need not be disclosed. For example, if a government agency sponsored a study in which you have been involved and drups were provided by a pharmaceutical company, you need only list the pharmaceutical company.
intellectual property.
This section ask about patents and copyrights whether pending, issued, licensed and/or receiving royalties.
Refationships not covered above.
Use this section to report other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work.

## Definitions.

Entity: government agency, foundation, commercial sponsor, academic institution, etc.
Grant: A grant from an entity, generally [but not always] paid to your organization
Personal Fees: Monies paid to you for services rendered, generally honoraria, royalties, or fees for consulting , lectures, speakers bureaus, expert testimony, employment, or other affiliations
Non-Financial Support: Examples include drugs/equipment supplied by the entity, travel paid by the entity, writing assistance, administrative support, etc.

Other: Anything not covered under the previous three boxes Pending: The patent has been filed but not issued Issued: The patent has been issued by the agency

## Licensed:

The patent has been licensed to an entity, whether earning royalties or not
Royalties:Funds are coming in to you or your institution due to your patent

## ICMJE Form for Disclosure of Potential Conflicts of Interest

## Section 1.

## Identifying Information



2．Surname（Last Name）
Inni．．


4．Are you the corresponding author？

## 3．Date



5．Manuscript Title

6．Manuscript Identifying Number（if you know it）
ヘロபтயクロィロ ィフィ

## Section 2. <br> The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party（government，commercial，private foundation，etc．）for any aspect of the submitted work（including but not limited to grants，data monitoring board，study design，manuscript preparation， statistical analysis，etc．）？
Are there any relevant conflicts of interest？ $\square$ Yes

## Section 3.

## Relevant financial activities outside the submitted work．

Place a check in the appropriate boxes in the table to indicate whether you have financial relationships（regardless of amount of compensation）with entities as described in the instructions．Use one line for each entity；add as many lines as you need by clicking the＂Add＋＂box．You should report relationships that were present during the $\mathbf{3 6}$ months prior to publication．

Are there any relevant conflicts of interest？ $\square$ Yes

## Section 4.

## Intellectual Property－－Patents \＆Copyrights

Do you have any patents，whether planned，pending or issued，broadly relevant to the work？ $\square$ Yes $\checkmark$ No

## Section 5.

## Relationships not covered above

Are there other relationships or activities that readers could perceive to have influenced，or that give the appearance of potentially influencing，what you wrote in the submitted work？
$\square$ Yes，the following relationships／conditions／circumstances are present（explain below）：
$\checkmark$ No other relationships／conditions／circumstances that present a potential conflict of interest

## ICMJE Form for Disclosure of Potential Conflicts of Interest

At the time of manuscript acceptance, journals will ask authors to confirm and, if necessary, update their disclosure statements. On occasion, journals may ask authors to disclose further information about reported relationships.

## Section 6. Disclosure Statement

Based on the above disclosures, this form will automatically generate a disclosure statement, which will appear in the box below.

## Generate Disclosure Statement

## Evaluation and Feedback

Please visit http://www.icmje.org/cgi-bin/feedback to provide feedback on your experience with completing this form.

## Ophthalmology ${ }^{\circledR}$, Ophthalmology ${ }^{\circledR}$ Retina, and Ophthalmology ${ }^{\circledR}$ Glaucoma Author Contributorship Statement

The journal adheres to the Uniform Requirements set by the International Committee of Medical Journal Editors (http://www.icmje.org/) for authorship. To qualify for authorship, authors must make substantial contributions to the intellectual content of the paper in each of the four following categories:

1. Substantial contributions to conception and design of the work; or the acquisition, analysis, or interpretation of data for the work; AND
2. Drafting the work or revising it critically for important intellectual content; AND
3. Final approval of the version to be published; AND
4. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

It is the responsibility of the corresponding author, prior to submitting the manuscript, to confirm that each coauthor meets the requirements for authorship. Please list all authors of the manuscript on the Contributorship Statement form below. The form need not be uploaded at the time of original manuscript submission but rather if/when the Editorial Board invites revision.

By submitting this form, the corresponding author acknowledges that each author has read the statement on authorship responsibility and contribution to authorship. In the table below, please designate the contributions of each author. Any relevant contribution not described in the four columns can be added under "Other contributions." Please note that the list of contributions will publish with the manuscript should it be accepted. Thank you.

TTLLE of article: Diagnostic Accuracy of Technology-based Eye Care Services (TECS): Tr authors: April Y Maa, MD; Charles M. Medert, MD, Xiaoqin Lu, MD; Rabeea Janjua, M

| AUTHOR NAME | RESEARCH DESIGN | DATA ACQUISITION <br> AND/OR RESEARCH <br> EXECUTION | DATA ANALYSIS <br> AND/OR <br> INTERPRETATION | MANUSCRIPT <br> PREPARATION |
| :---: | :---: | :---: | :---: | :---: |
| April Maa | $\square$ | $\square$ | $\square$ | $\square$ |
| Charles Medert | $\square$ | $\square$ | $\square$ | $\square$ |
| Xiaoqin Lu | $\square$ | $\square$ | $\square$ | $\square$ |
| Rabeea Janja | $\square$ | $\square$ | $\square$ | $\square$ |
| Ashley Howell | $\square$ | $\square$ | $\square$ | $\square$ |
| Kelly Hunt | $\square$ | $\square$ | $\square$ | $\square$ |
| Sarah McCord | $\square$ | $\square$ | $\square$ | $\square$ |
| Mary Lynch | $\square$ | $\square$ | $\square$ | $\square$ |

OTHER CONTRIBUTIONS:
Annette Giangiacomo - manuscript preparation

Figure 1 Supplemental: TECS Imaging protocol.


Cataracts (SAS output pages 5 and 9)

|  |  | TECS R1 |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | No cataracts | Cataracts | Total |
| FTF | No cataracts | 240 | 6 | 246 |
|  | Cataracts | 0 | 10 | 10 |
| Total |  |  | 240 | 16 |
| 256 |  |  |  |  |


|  |  | TECS R2 |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | No cataracts | Cataracts | Total |
| FTF | No cataracts | 240 | 6 | 246 |
|  | Cataracts | 1 | 9 | 10 |
| Total |  |  | 241 | 15 |
| 256 |  |  |  |  |

Glaucoma (SAS output pages 13 and 17)

|  |  | TECS R1 |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | No glaucoma | Glaucoma | Total |
| FTF | No glaucoma | 172 | 16 | 188 |
|  | Glaucoma | 19 | 49 | 68 |
|  | Total | 191 | 65 | 256 |


|  |  | TECS R2 |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | No glaucoma | Glaucoma | Total |
| FTF | No glaucoma | 183 | 5 | 188 |
|  | Glaucoma | 36 | 32 | 68 |
| Total |  |  |  |  |

Macular degeneration (SAS output pages 21 and 25)

|  |  | TECS R1 |  |  |
| :---: | :--- | :---: | :---: | :---: |
|  |  | No AMD | AMD | Total |
| FTF | No AMD | 248 | 2 | 250 |
|  | AMD | 3 | 3 | 6 |
|  |  | Total | 251 | 5 |


|  |  | TECS R2 |  |  |  |  |  |  |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FTF |  | No AMD | 238 | 12 |  |  |  |  |
| Fo AMD | AMD | Total |  |  |  |  |  |  |
|  | AMD | 2 | 4 | 6 |  |  |  |  |
| Total |  |  |  |  |  | 240 | 16 | 256 |

Diabetic retinopathy (SAS output pages 29 and 33)

|  |  | TECS R1 |  |  |
| :---: | :--- | :---: | :---: | :---: |
|  |  | No DM ret | DM ret | Total |
| FTF | No DM ret | 246 | 2 | 248 |
|  | DM ret | 2 | 6 | 8 |
|  | Total | 248 | 8 | 256 |


|  |  | TECS R2 |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | No DM ret | DM ret | Total |
| FTF | No DM ret | 245 | 3 | 248 |
|  | DM ret | 3 | 5 | 8 |
| Total |  | 248 | 8 | 256 |

Any diagnosis requiring referral (SAS output pages 37 and 41)

|  |  | TECS R1 |  |  |
| :---: | :--- | :---: | :---: | :---: |
|  |  | No referral | Referral | Total |
| FTF | No referral | 107 | 37 | 144 |
|  | Referral | 26 | 86 | 112 |
| Total |  | 133 | 123 | 256 |


|  |  | TECS R2 |  |  |
| :---: | :--- | :---: | :---: | :---: |
| FTF |  | No referral | Referral | Total |
| No referral | 84 | 60 | 144 |  |
|  | Referral | 21 | 91 | 112 |
| Total |  | 105 | 151 | 256 |

## DEMOGRAPHICS

The MEANS Procedure

| Analysis Variable : age |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | :---: |
| $\mathbf{N}$ | Mean | Std Dev | Minimum | Maximum |  |
| 256 | 59.9921875 | 11.6315973 | 28.0000000 | 90.0000000 |  |

DEMOGRAPHICS

The FREQ Procedure

| gender | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| :--- | ---: | ---: | ---: | ---: |
| female | 34 | 13.28 | 34 | 13.28 |
| male | 222 | 86.72 | 256 | 100.00 |


| race_ethnicity | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| :--- | ---: | ---: | ---: | ---: |
| asian | 1 | 0.39 | 1 | 0.39 |
| black | 157 | 61.33 | 158 | 61.72 |
| white | 98 | 38.28 | 256 | 100.00 |


| eyedx_hx | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 96 | 37.80 | 96 | 37.80 |
| $\mathbf{1}$ | 158 | 62.20 | 254 | 100.00 |

Frequency Missing $=2$

| eyetrauma | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 181 | 72.40 | 181 | 72.40 |
| $\mathbf{1}$ | 69 | 27.60 | 250 | 100.00 |

Frequency Missing = 6

| fam_eyehx | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 187 | 74.80 | 187 | 74.80 |
| $\mathbf{1}$ | 63 | 25.20 | 250 | 100.00 |

Frequency Missing = 6

DEMOGRAPHICS
The FREQ Procedure

| smoke_hx | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 100 | 41.67 | 100 | 41.67 |
| $\mathbf{1}$ | 71 | 29.58 | 171 | 71.25 |
| $\mathbf{2}$ | 69 | 28.75 | 240 | 100.00 |

## Frequency Missing $=16$

## IN-PERSON VS READER 1 PRE-OCT CATARACT DIAGNOSES

The FREQ Procedure

| FCATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 246 | 96.09 | 246 | 96.09 |
| $\mathbf{1}$ | 10 | 3.91 | 256 | 100.00 |


| S1ACATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 240 | 93.75 | 240 | 93.75 |
| $\mathbf{1}$ | 16 | 6.25 | 256 | 100.00 |


| FVR1PRE_MATCH | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 6 | 2.34 | 6 | 2.34 |
| $\mathbf{1}$ | 250 | 97.66 | 256 | 100.00 |

## IN-PERSON VS READER 1 PRE-OCT CATARACT DIAGNOSES

The FREQ Procedure

| Table of FCATR by S1ACATR |  |  |  |
| :---: | :---: | :---: | :---: |
| FCATR | S1ACATR |  |  |
| Frequency <br> Percent Row Pct Col Pct | 0 | 1 | Total |
| 0 | $\begin{array}{r} 240 \\ 93.75 \\ 97.56 \\ 100.00 \end{array}$ | $\begin{array}{r} 6 \\ 2.34 \\ 2.44 \\ 37.50 \end{array}$ | $\begin{array}{r} 246 \\ 96.09 \end{array}$ |
| 1 | $\begin{array}{r} 0 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$ | $\begin{array}{r} 10 \\ 3.91 \\ 100.00 \\ 62.50 \end{array}$ | $\begin{array}{r} 10 \\ 3.91 \end{array}$ |
| Total | $\begin{array}{r} 240 \\ 93.75 \end{array}$ | $\begin{array}{r} 16 \\ 6.25 \end{array}$ | $\begin{array}{r} 256 \\ 100.00 \end{array}$ |

## Statistics for Table of FCATR by S1ACATR

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 6.0000 |
| DF | 1 |
| $\mathbf{P r}>\mathbf{S}$ | 0.0143 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.7576 |
| ASE | 0.0949 |
| 95\% Lower Conf Limit | 0.5716 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9435 |

Sample Size $=256$

The FREQ Procedure

| S1ACATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{1}$ | 10 | 100.00 | 10 | 100.00 |


| Binomial Proportion for <br> S1ACATR = 1 |  |
| :--- | ---: |
| Proportion (P) | 1.0000 |
| ASE | 0.0000 |
| 95\% Lower Conf Limit | 1.0000 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 1.0000 |
|  |  |
| Exact Conf Limits |  |
| $\mathbf{9 5 \%}$ Lower Conf Limit | 0.6915 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 1.0000 |


| Test of H0: Proportion $=\mathbf{0 . 5}$ |  |
| :--- | ---: |
| ASE under H0 | 0.1581 |
| Z | 3.1623 |
| One-sided Pr > Z | 0.0008 |
| Two-sided Pr > \|Z| | 0.0016 |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | $9.766 \mathrm{E}-04$ |
| Two-sided = 2 * One-sided | 0.0020 |

Sample Size $=10$

The FREQ Procedure

| S1ACATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 240 | 97.56 | 240 | 97.56 |
| $\mathbf{1}$ | 6 | 2.44 | 246 | 100.00 |


| Binomial Proportion for <br> S1ACATR = 0 |  |
| :--- | ---: |
| Proportion (P) | 0.9756 |
| ASE | 0.0098 |
| 95\% Lower Conf Limit | 0.9563 |
| 95\% Upper Conf Limit | 0.9949 |
|  |  |
| Exact Conf Limits |  |
| $\mathbf{9 5 \%}$ Lower Conf Limit | 0.9477 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9910 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0319 |
| $\mathbf{Z}$ | 14.9193 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z| | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | $6.151 \mathrm{E}-14$ |
| Two-sided = 2 * One-sided | $1.230 \mathrm{E}-13$ |

Sample Size $=246$

## IN-PERSON VS READER 2 PRE-OCT CATARACT DIAGNOSES

The FREQ Procedure

| FCATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 246 | 96.09 | 246 | 96.09 |
| $\mathbf{1}$ | 10 | 3.91 | 256 | 100.00 |


| S2ACATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 241 | 94.14 | 241 | 94.14 |
| $\mathbf{1}$ | 15 | 5.86 | 256 | 100.00 |


| FVR2PRE_MATCH | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 7 | 2.73 | 7 | 2.73 |
| $\mathbf{1}$ | 249 | 97.27 | 256 | 100.00 |

## IN-PERSON VS READER 2 PRE-OCT CATARACT DIAGNOSES

The FREQ Procedure

| Table of FCATR by S2ACATR |  |  |  |
| :---: | :---: | :---: | :---: |
| FCATR | S2ACATR |  |  |
| Frequency <br> Percent Row Pct Col Pct | 0 | 1 | Total |
| 0 | $\begin{array}{r} 240 \\ 93.75 \\ 97.56 \\ 99.59 \end{array}$ | $\begin{array}{r} 6 \\ 2.34 \\ 2.44 \\ 40.00 \end{array}$ | $\begin{array}{r} 246 \\ 96.09 \end{array}$ |
| 1 | $\begin{array}{r} 1 \\ 0.39 \\ 10.00 \\ 0.41 \end{array}$ | $\begin{array}{r} 9 \\ 3.52 \\ 90.00 \\ 60.00 \end{array}$ | 10 3.91 |
| Total | $\begin{array}{r} 241 \\ 94.14 \end{array}$ | $\begin{array}{r} 15 \\ 5.86 \end{array}$ | $\begin{array}{r} 256 \\ 100.00 \end{array}$ |

Statistics for Table of FCATR by S2ACATR

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 3.5714 |
| DF | 1 |
| Pr > S | 0.0588 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.7062 |
| ASE | 0.1051 |
| 95\% Lower Conf Limit | 0.5003 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9122 |

Sample Size $=256$

The FREQ Procedure

| S2ACATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 1 | 10.00 | 1 | 10.00 |
| $\mathbf{1}$ | 9 | 90.00 | 10 | 100.00 |


| Binomial Proportion for <br> S2ACATR = 1 |  |
| :--- | :---: |
| Proportion (P) | 0.9000 |
| ASE | 0.0949 |
| $\mathbf{9 5 \%}$ Lower Conf Limit | 0.7141 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 1.0000 |
|  |  |
| Exact Conf Limits |  |
| $\mathbf{9 5 \%}$ Lower Conf Limit | 0.5550 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9975 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.1581 |
| $\mathbf{Z}$ | 2.5298 |
| One-sided Pr > Z | 0.0057 |
| Two-sided Pr > \|Z| | 0.0114 |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.0107 |
| Two-sided = 2 * One-sided | 0.0215 |

Sample Size $=10$

The FREQ Procedure

| S2ACATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 240 | 97.56 | 240 | 97.56 |
| $\mathbf{1}$ | 6 | 2.44 | 246 | 100.00 |


| Binomial Proportion for <br> S2ACATR = 0 |  |
| :--- | ---: |
| Proportion (P) | 0.9756 |
| ASE | 0.0098 |
| $\mathbf{9 5 \%}$ Lower Conf Limit | 0.9563 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9949 |
|  |  |
| Exact Conf Limits |  |
| $\mathbf{9 5 \%}$ Lower Conf Limit | 0.9477 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9910 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0319 |
| $\mathbf{Z}$ | 14.9193 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z| | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | $6.151 \mathrm{E}-14$ |
| Two-sided = 2 * One-sided | $1.230 \mathrm{E}-13$ |

$$
\text { Sample Size }=246
$$

IN-PERSON VS READER 1 PRE-OCT GLAUCOMA DIAGNOSES

The FREQ Procedure

| FGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| :--- | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 188 | 73.44 | 188 | 73.44 |
| $\mathbf{1}$ | 68 | 26.56 | 256 | 100.00 |


| S1AGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 191 | 74.61 | 191 | 74.61 |
| $\mathbf{1}$ | 65 | 25.39 | 256 | 100.00 |


| FVR1PRE_MATCH_GL | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 35 | 13.67 | 35 | 13.67 |
| $\mathbf{1}$ | 221 | 86.33 | 256 | 100.00 |

IN-PERSON VS READER 1 PRE-OCT GLAUCOMA DIAGNOSES

The FREQ Procedure

| Table of FGLAU by S1AGLAU |  |  |  |
| :--- | ---: | ---: | ---: |
| FGLAU | S1AGLAU |  |  |
| Frequency |  |  |  |
| Percent |  |  |  |
| Row Pct |  |  |  |
| Col Pct | 0 | $\mathbf{1}$ | Total |
| $\mathbf{0}$ | 172 | 16 | 188 |
|  | 67.19 | 6.25 | 73.44 |
|  | 91.49 | 8.51 |  |
|  | 90.05 | 24.62 |  |
| $\mathbf{1}$ | 19 | 49 | 68 |
|  | 7.42 | 19.14 | 26.56 |
|  | 27.94 | 72.06 |  |
| Total | 9.95 | 75.38 |  |

## Statistics for Table of FGLAU by S1AGLAU

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 0.2571 |
| DF | 1 |
| Pr > S | 0.6121 |


| Simple Kappa Coefficient |  |
| :--- | ---: |
| Kappa | 0.6446 |
| ASE | 0.0549 |
| 95\% Lower Conf Limit | 0.5370 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.7521 |

Sample Size $=256$

The FREQ Procedure

| S1AGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 19 | 27.94 | 19 | 27.94 |
| $\mathbf{1}$ | 49 | 72.06 | 68 | 100.00 |


| Binomial Proportion for <br> S1AGLAU = 1 |  |
| :--- | ---: |
| Proportion (P) | 0.7206 |
| ASE | 0.0544 |
| 95\% Lower Conf Limit | 0.6139 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.8272 |
|  |  |
| Exact Conf Limits |  |
| $\mathbf{9 5 \%}$ Lower Conf Limit | 0.5985 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.8227 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0606 |
| $\mathbf{Z}$ | 3.6380 |
| One-sided Pr > Z | 0.0001 |
| Two-sided Pr > \|Z| | 0.0003 |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | $1.790 \mathrm{E}-04$ |
| Two-sided = 2 * One-sided | $3.580 \mathrm{E}-04$ |

Sample Size $=68$

The FREQ Procedure

| S1AGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 172 | 91.49 | 172 | 91.49 |
| $\mathbf{1}$ | 16 | 8.51 | 188 | 100.00 |


| Binomial Proportion for <br> S1AGLAU = 0 |  |
| :--- | ---: |
| Proportion (P) | 0.9149 |
| ASE | 0.0204 |
| 95\% Lower Conf Limit | 0.8750 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9548 |
|  |  |
| Exact Conf Limits |  |
| $\mathbf{9 5 \%}$ Lower Conf Limit | 0.8655 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9506 |


| Test of H0: Proportion $=\mathbf{0 . 5}$ |  |
| :--- | ---: |
| ASE under H0 | 0.0365 |
| $\mathbf{Z}$ | 11.3775 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z| | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.0000 |
| Two-sided $=\mathbf{2} *$ One-sided | 0.0000 |

Sample Size $=188$

IN-PERSON VS READER 2 PRE-OCT GLAUCOMA DIAGNOSES

The FREQ Procedure

| FGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| :--- | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 188 | 73.44 | 188 | 73.44 |
| $\mathbf{1}$ | 68 | 26.56 | 256 | 100.00 |


| S2AGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 219 | 85.55 | 219 | 85.55 |
| $\mathbf{1}$ | 37 | 14.45 | 256 | 100.00 |


| FVR2PRE_MATCH_GL | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 41 | 16.02 | 41 | 16.02 |
| $\mathbf{1}$ | 215 | 83.98 | 256 | 100.00 |

## IN-PERSON VS READER 2 PRE-OCT GLAUCOMA DIAGNOSES

The FREQ Procedure

| Table of FGLAU by S2AGLAU |  |  |  |
| :--- | ---: | ---: | ---: |
| FGLAU | S2AGLAU |  |  |
| Frequency |  |  |  |
| Percent |  |  |  |
| Row Pct |  |  |  |
| Col Pct | $\mathbf{0}$ | $\mathbf{1}$ | Total |
| $\mathbf{0}$ | 183 | 5 | 188 |
|  | 71.48 | 1.95 | 73.44 |
|  | 97.34 | 2.66 |  |
|  | 83.56 | 13.51 |  |
| $\mathbf{1}$ | 36 | 32 | 68 |
|  | 14.06 | 12.50 | 26.56 |
|  | 52.94 | 47.06 |  |
| Total | 16.44 | 86.49 |  |

## Statistics for Table of FGLAU by S2AGLAU

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 23.4390 |
| DF | 1 |
| $\mathbf{P r}>\mathbf{S}$ | $<.0001$ |


| Simple Kappa Coefficient |  |
| :--- | ---: |
| Kappa | 0.5196 |
| ASE | 0.0626 |
| 95\% Lower Conf Limit | 0.3969 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.6423 |

Sample Size $=256$

The FREQ Procedure

| S2AGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 36 | 52.94 | 36 | 52.94 |
| $\mathbf{1}$ | 32 | 47.06 | 68 | 100.00 |


| Binomial Proportion for <br> S2AGLAU = 1 |  |
| :--- | ---: |
| Proportion (P) | 0.4706 |
| ASE | 0.0605 |
| 95\% Lower Conf Limit | 0.3520 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.5892 |
|  |  |
| Exact Conf Limits |  |
| $\mathbf{9 5 \%}$ Lower Conf Limit | 0.3483 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.5955 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0606 |
| $\mathbf{Z}$ | -0.4851 |
| One-sided $\operatorname{Pr}<\quad \mathbf{Z}$ | 0.3138 |
| Two-sided $\operatorname{Pr}>\|\mathbf{Z}\|$ | 0.6276 |
|  |  |
| Exact Test |  |
| One-sided Pr <= P | 0.3582 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.7163 |

Sample Size $=68$

The FREQ Procedure

| S2AGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 183 | 97.34 | 183 | 97.34 |
| $\mathbf{1}$ | 5 | 2.66 | 188 | 100.00 |


| Binomial Proportion for <br> S2AGLAU = 0 |  |
| :--- | ---: |
| Proportion (P) | 0.9734 |
| ASE | 0.0117 |
| 95\% Lower Conf Limit | 0.9504 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9964 |
|  |  |
| Exact Conf Limits |  |
| $\mathbf{9 5 \%}$ Lower Conf Limit | 0.9390 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9913 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0365 |
| Z | 12.9820 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z| | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.0000 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.0000 |

$$
\text { Sample Size }=188
$$

The FREQ Procedure

| FMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| :--- | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 250 | 97.66 | 250 | 97.66 |
| $\mathbf{1}$ | 6 | 2.34 | 256 | 100.00 |


| S1AMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 251 | 98.05 | 251 | 98.05 |
| $\mathbf{1}$ | 5 | 1.95 | 256 | 100.00 |


| FVR1PRE_MATCH_MD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 5 | 1.95 | 5 | 1.95 |
| $\mathbf{1}$ | 251 | 98.05 | 256 | 100.00 |

The FREQ Procedure

| Table of FMD by S1AMD |  |  |  |
| :--- | ---: | ---: | ---: |
| FMD | S1AMD |  |  |
| Frequency |  |  |  |
| Percent |  |  |  |
| Row Pct |  |  |  |
| Col Pct | 0 | $\mathbf{1}$ | Total |
| $\mathbf{0}$ | 248 | 2 | 250 |
|  | 96.88 | 0.78 | 97.66 |
|  | 99.20 | 0.80 |  |
|  | 98.80 | 40.00 |  |
| $\mathbf{1}$ | 3 | 3 | 6 |
|  | 1.17 | 1.17 | 2.34 |
|  | 50.00 | 50.00 |  |
|  | 1.20 | 60.00 |  |
| Total | 251 | 5 | 256 |
|  | 98.05 | 1.95 | 100.00 |

Statistics for Table of FMD by S1AMD

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 0.2000 |
| DF | 1 |
| $\mathbf{P r}>\mathbf{S}$ | 0.6547 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.5356 |
| ASE | 0.1837 |
| 95\% Lower Conf Limit | 0.1755 |
| 95\% Upper Conf Limit | 0.8956 |

Sample Size $=256$

## The FREQ Procedure

| S1AMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 3 | 50.00 | 3 | 50.00 |
| $\mathbf{1}$ | 3 | 50.00 | 6 | 100.00 |


| Binomial Proportion for <br> S1AMD = 1 |  |
| :--- | :---: |
| Proportion (P) | 0.5000 |
| ASE | 0.2041 |
| 95\% Lower Conf Limit | 0.0999 |
| 95\% Upper Conf Limit | 0.9001 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.1181 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.8819 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.2041 |
| Z | 0.0000 |
| One-sided $\operatorname{Pr}<\mathbf{Z}$ | 0.5000 |
| Two-sided $\operatorname{Pr}>\|\mathbf{Z}\|$ | 1.0000 |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.6563 |
| Two-sided $=\mathbf{2}$ * One-sided | 1.0000 |

$$
\text { Sample Size }=6
$$

## The FREQ Procedure

| S1AMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 248 | 99.20 | 248 | 99.20 |
| $\mathbf{1}$ | 2 | 0.80 | 250 | 100.00 |


| Binomial Proportion for <br> S1AMD = 0 |  |
| :--- | :---: |
| Proportion (P) | 0.9920 |
| ASE | 0.0056 |
| 95\% Lower Conf Limit | 0.9810 |
| 95\% Upper Conf Limit | 1.0000 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.9714 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9990 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0316 |
| Z | 15.5584 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided $\operatorname{Pr}>\|\mathbf{Z}\|$ | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.0000 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.0000 |

Sample Size $=250$

The FREQ Procedure

| FMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| :--- | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 250 | 97.66 | 250 | 97.66 |
| $\mathbf{1}$ | 6 | 2.34 | 256 | 100.00 |


| S2AMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 240 | 93.75 | 240 | 93.75 |
| $\mathbf{1}$ | 16 | 6.25 | 256 | 100.00 |


| FVR2PRE_MATCH_MD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 14 | 5.47 | 14 | 5.47 |
| $\mathbf{1}$ | 242 | 94.53 | 256 | 100.00 |

The FREQ Procedure

| Table of FMD by S2AMD |  |  |  |
| :--- | ---: | ---: | ---: |
| FMD | S2AMD |  |  |
| Frequency |  |  |  |
| Percent |  |  |  |
| Row Pct |  |  |  |
| Col Pct | 0 | $\mathbf{1}$ | Total |
| $\mathbf{0}$ | 238 | 12 | 250 |
|  | 92.97 | 4.69 | 97.66 |
|  | 95.20 | 4.80 |  |
|  | 99.17 | 75.00 |  |
| $\mathbf{1}$ | 2 | 4 | 6 |
|  | 0.78 | 1.56 | 2.34 |
|  | 33.33 | 66.67 |  |
|  | 0.83 | 25.00 |  |
| Total | 240 | 16 | 256 |
|  | 93.75 | 6.25 | 100.00 |

Statistics for Table of FMD by S2AMD

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 7.1429 |
| DF | 1 |
| $\mathbf{P r}>\mathbf{S}$ | 0.0075 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.3412 |
| ASE | 0.1316 |
| 95\% Lower Conf Limit | 0.0832 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.5991 |

$$
\text { Sample Size }=256
$$

## The FREQ Procedure

| S2AMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 2 | 33.33 | 2 | 33.33 |
| $\mathbf{1}$ | 4 | 66.67 | 6 | 100.00 |


| Binomial Proportion for <br> S2AMD = 1 |  |
| :--- | :---: |
| Proportion (P) | 0.6667 |
| ASE | 0.1925 |
| 95\% Lower Conf Limit | 0.2895 |
| 95\% Upper Conf Limit | 1.0000 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.2228 |
| 95\% Upper Conf Limit | 0.9567 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.2041 |
| $\mathbf{Z}$ | 0.8165 |
| One-sided $\operatorname{Pr}>\mathbf{Z}$ | 0.2071 |
| Two-sided $\operatorname{Pr}>\|\mathbf{Z}\|$ | 0.4142 |
|  |  |
| Exact Test |  |
| One-sided $\operatorname{Pr}>=\mathbf{P}$ | 0.3437 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.6875 |

$$
\text { Sample Size }=6
$$

## The FREQ Procedure

| S2AMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 238 | 95.20 | 238 | 95.20 |
| $\mathbf{1}$ | 12 | 4.80 | 250 | 100.00 |


| Binomial Proportion for <br> S2AMD = 0 |  |
| :--- | :---: |
| Proportion (P) | 0.9520 |
| ASE | 0.0135 |
| 95\% Lower Conf Limit | 0.9255 |
| 95\% Upper Conf Limit | 0.9785 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.9177 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9750 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0316 |
| Z | 14.2935 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided $\operatorname{Pr}>\|\mathbf{Z}\|$ | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.0000 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.0000 |

Sample Size $=250$

The FREQ Procedure

| FRET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 248 | 96.88 | 248 | 96.88 |
| $\mathbf{1}$ | 8 | 3.13 | 256 | 100.00 |


| S1ARET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 248 | 96.88 | 248 | 96.88 |
| $\mathbf{1}$ | 8 | 3.13 | 256 | 100.00 |


| FVR1PRE_MATCH_RT | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 4 | 1.56 | 4 | 1.56 |
| $\mathbf{1}$ | 252 | 98.44 | 256 | 100.00 |

The FREQ Procedure

| Table of FRET by S1ARET |  |  |  |
| :--- | ---: | ---: | ---: |
| FRET | S1ARET |  |  |
| Frequency |  |  |  |
| Percent |  |  |  |
| Row Pct |  |  |  |
| Col Pct |  |  |  |
|  | $\mathbf{0}$ | $\mathbf{1}$ | Total |
|  | $\mathbf{0}$ | 246 | 2 |
|  | 96.09 | 0.78 | 96.88 |
|  | 99.19 | 0.81 |  |
|  | 99.19 | 25.00 |  |
|  | 2 | 6 | 8 |
|  | $\mathbf{1}$ | 0.78 | 2.34 |
|  | 25.00 | 75.00 | 3.13 |
|  | 0.81 | 75.00 |  |
| Total | 248 | 8 | 256 |
|  | 96.88 | 3.13 | 100.00 |

Statistics for Table of FRET by S1ARET

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 0.0000 |
| DF | 1 |
| Pr >S | 1.0000 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.7419 |
| ASE | 0.1242 |
| 95\% Lower Conf Limit | 0.4986 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9853 |

Sample Size $=256$

The FREQ Procedure

| S1ARET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 2 | 25.00 | 2 | 25.00 |
| $\mathbf{1}$ | 6 | 75.00 | 8 | 100.00 |


| Binomial Proportion for <br> S1ARET = 1 |  |
| :--- | :---: |
| Proportion (P) | 0.7500 |
| ASE | 0.1531 |
| 95\% Lower Conf Limit | 0.4499 |
| 95\% Upper Conf Limit | 1.0000 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.3491 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9681 |


| Test of H0: Proportion $=0.5$ |  |
| :--- | ---: |
| ASE under H0 | 0.1768 |
| $\mathbf{Z}$ | 1.4142 |
| One-sided Pr > Z | 0.0786 |
| Two-sided Pr > \|Z| | 0.1573 |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.1445 |
| Two-sided = 2 * One-sided | 0.2891 |

$$
\text { Sample Size }=8
$$

The FREQ Procedure

| S1ARET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 246 | 99.19 | 246 | 99.19 |
| $\mathbf{1}$ | 2 | 0.81 | 248 | 100.00 |


| Binomial Proportion for <br> S1ARET = 0 |  |
| :--- | :---: |
| Proportion (P) | 0.9919 |
| ASE | 0.0057 |
| 95\% Lower Conf Limit | 0.9808 |
| 95\% Upper Conf Limit | 1.0000 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.9712 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9990 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0318 |
| Z | 15.4940 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.0000 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.0000 |

Sample Size $=248$

The FREQ Procedure

| FRET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 248 | 96.88 | 248 | 96.88 |
| $\mathbf{1}$ | 8 | 3.13 | 256 | 100.00 |


| S2ARET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 248 | 96.88 | 248 | 96.88 |
| $\mathbf{1}$ | 8 | 3.13 | 256 | 100.00 |


| FVR2PRE_MATCH_RT | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 6 | 2.34 | 6 | 2.34 |
| $\mathbf{1}$ | 250 | 97.66 | 256 | 100.00 |

## IN-PERSON VS READER 2 PRE-OCT RETINOPATHY DIAGNOSES

The FREQ Procedure

| Table of FRET by S2ARET |  |  |  |
| :--- | ---: | ---: | ---: |
| FRET | S2ARET |  |  |
| Frequency <br> Percent <br> Row Pct |  |  |  |
| Col Pct |  |  |  |
|  | $\mathbf{0}$ | $\mathbf{1}$ | Total |
|  | $\mathbf{0}$ | 245 | 3 |
|  | 95.70 | 1.17 | 968 |
|  | 98.79 | 1.21 |  |
|  | 98.79 | 37.50 |  |
|  | $\mathbf{1}$ | 3 | 5 |
|  | 1.17 | 1.95 | 8.13 |
|  | 37.50 | 62.50 |  |
|  | 1.21 | 62.50 |  |
| Total | 248 | 8 | 256 |
|  | 96.88 | 3.13 | 100.00 |

Statistics for Table of FRET by S2ARET

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 0.0000 |
| DF | 1 |
| Pr $>\mathbf{S}$ | 1.0000 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.6129 |
| ASE | 0.1453 |
| 95\% Lower Conf Limit | 0.3282 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.8976 |

Sample Size $=256$

The FREQ Procedure

| S2ARET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 3 | 37.50 | 3 | 37.50 |
| $\mathbf{1}$ | 5 | 62.50 | 8 | 100.00 |


| Binomial Proportion for <br> S2ARET = 1 |  |
| :--- | :---: |
| Proportion (P) | 0.6250 |
| ASE | 0.1712 |
| 95\% Lower Conf Limit | 0.2895 |
| 95\% Upper Conf Limit | 0.9605 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.2449 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9148 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.1768 |
| Z | 0.7071 |
| One-sided Pr > Z | 0.2398 |
| Two-sided Pr > \|Z | 0.4795 |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.3633 |
| Two-sided = 2 $*$ One-sided | 0.7266 |

$$
\text { Sample Size }=8
$$

The FREQ Procedure

| S2ARET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 245 | 98.79 | 245 | 98.79 |
| $\mathbf{1}$ | 3 | 1.21 | 248 | 100.00 |


| Binomial Proportion for <br> S2ARET = 0 |  |
| :--- | :---: |
| Proportion (P) | 0.9879 |
| ASE | 0.0069 |
| 95\% Lower Conf Limit | 0.9743 |
| 95\% Upper Conf Limit | 1.0000 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.9651 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9975 |


| Test of H0: Proportion $=\mathbf{0 . 5}$ |  |
| :--- | ---: |
| ASE under H0 | 0.0318 |
| Z | 15.3670 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.0000 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.0000 |

Sample Size $=248$

IN-PERSON VS READER 1 PRE-OCT DIAGNOSIS REQUIRING REFERRAL

The FREQ Procedure

| FREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 144 | 56.25 | 144 | 56.25 |
| $\mathbf{1}$ | 112 | 43.75 | 256 | 100.00 |


| S1AREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 133 | 51.95 | 133 | 51.95 |
| $\mathbf{1}$ | 123 | 48.05 | 256 | 100.00 |


| FVR1PRE_MATCH_RF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 63 | 24.61 | 63 | 24.61 |
| $\mathbf{1}$ | 193 | 75.39 | 256 | 100.00 |

## IN-PERSON VS READER 1 PRE-OCT DIAGNOSIS REQUIRING REFERRAL

The FREQ Procedure

| Table of FREF by S1AREF |  |  |  |
| :--- | ---: | ---: | ---: |
| FREF | S1AREF |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct |  |  |  |
|  | $\mathbf{0}$ | $\mathbf{1}$ | Total |
|  | $\mathbf{0}$ | 107 | 37 |
|  | 41.80 | 14.45 | 56.25 |
|  | 74.31 | 25.69 |  |
|  | 80.45 | 30.08 |  |
|  | 26 | 86 | 112 |
|  | 10.16 | 33.59 | 43.75 |
|  | 23.21 | 76.79 |  |
| Total | 19.55 | 69.92 |  |

Statistics for Table of FREF by S1AREF

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 1.9206 |
| DF | 1 |
| Pr > S | 0.1658 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.5054 |
| ASE | 0.0539 |
| 95\% Lower Conf Limit | 0.3998 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.6110 |

Sample Size $=256$

The FREQ Procedure

| S1AREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 26 | 23.21 | 26 | 23.21 |
| $\mathbf{1}$ | 86 | 76.79 | 112 | 100.00 |


| Binomial Proportion for <br> S1AREF = 1 |  |
| :--- | :---: |
| Proportion (P) | 0.7679 |
| ASE | 0.0399 |
| 95\% Lower Conf Limit | 0.6897 |
| 95\% Upper Conf Limit | 0.8460 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.6786 |
| 95\% Upper Conf Limit | 0.8424 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0472 |
| Z | 5.6695 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 5.505E-09 |
| Two-sided = 2 $*$ One-sided | $1.101 \mathrm{E}-08$ |

$$
\text { Sample Size }=112
$$

The FREQ Procedure

| S1AREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 107 | 74.31 | 107 | 74.31 |
| $\mathbf{1}$ | 37 | 25.69 | 144 | 100.00 |


| Binomial Proportion for <br> S1AREF $=0$ |  |
| :--- | :---: |
| Proportion (P) | 0.7431 |
| ASE | 0.0364 |
| 95\% Lower Conf Limit | 0.6717 |
| 95\% Upper Conf Limit | 0.8144 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.6636 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.8122 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0417 |
| Z | 5.8333 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z| | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 2.222E-09 |
| Two-sided = 2 $\boldsymbol{O}$ One-sided | $4.444 \mathrm{E}-09$ |

Sample Size $=144$

The FREQ Procedure

| FREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 144 | 56.25 | 144 | 56.25 |
| $\mathbf{1}$ | 112 | 43.75 | 256 | 100.00 |


| S2AREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 105 | 41.02 | 105 | 41.02 |
| $\mathbf{1}$ | 151 | 58.98 | 256 | 100.00 |


| FVR2PRE_MATCH_RF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 81 | 31.64 | 81 | 31.64 |
| $\mathbf{1}$ | 175 | 68.36 | 256 | 100.00 |

## IN-PERSON VS READER 2 PRE-OCT DIAGNOSES REQUIRING REFERRAL

The FREQ Procedure

| Table of FREF by S2AREF |  |  |  |
| :--- | ---: | ---: | ---: |
| FREF | S2AREF |  |  |
| Frequency <br> Percent <br> Row Pct |  |  |  |
| Col Pct |  |  |  |
|  | $\mathbf{0}$ | $\mathbf{1}$ | Total |
|  | $\mathbf{0}$ | 84 | 60 |
|  | 32.81 | 23.44 | 56.25 |
|  | 58.33 | 41.67 |  |
|  | 80.00 | 39.74 |  |
|  | $\mathbf{1}$ | 21 | 91 |
|  | 18.20 | 35.55 | 112 |
|  | 20.00 | 81.25 |  |
| Total | 105 | 151 |  |
|  | 41.02 | 58.98 | 100.00 |

Statistics for Table of FREF by S2AREF

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 18.7778 |
| DF | 1 |
| $\mathbf{P r}>\mathbf{S}$ | $<.0001$ |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.3811 |
| ASE | 0.0546 |
| 95\% Lower Conf Limit | 0.2742 |
| 95\% Upper Conf Limit | 0.4880 |

Sample Size $=256$

The FREQ Procedure

| S2AREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 21 | 18.75 | 21 | 18.75 |
| $\mathbf{1}$ | 91 | 81.25 | 112 | 100.00 |


| Binomial Proportion for <br> S2AREF = 1 |  |
| :--- | :---: |
| Proportion (P) | 0.8125 |
| ASE | 0.0369 |
| 95\% Lower Conf Limit | 0.7402 |
| 95\% Upper Conf Limit | 0.8848 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.7278 |
| 95\% Upper Conf Limit | 0.8800 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0472 |
| $\mathbf{Z}$ | 6.6144 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z| | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 7.060E-12 |
| Two-sided = 2 * One-sided | $1.412 \mathrm{E}-11$ |

$$
\text { Sample Size }=112
$$

The FREQ Procedure

| S2AREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 84 | 58.33 | 84 | 58.33 |
| $\mathbf{1}$ | 60 | 41.67 | 144 | 100.00 |


| Binomial Proportion for <br> S2AREF $=0$ |  |
| :--- | :---: |
| Proportion (P) | 0.5833 |
| ASE | 0.0411 |
| 95\% Lower Conf Limit | 0.5028 |
| 95\% Upper Conf Limit | 0.6639 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.4983 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.6648 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0417 |
| Z | 2.0000 |
| One-sided Pr > Z | 0.0228 |
| Two-sided Pr > \|Z | 0.0455 |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.0275 |
| Two-sided = 2 * One-sided | 0.0549 |

$$
\text { Sample Size }=144
$$

IN-PERSON VS READER 1 POST-OCT CATARACT DIAGNOSES

The FREQ Procedure

| FCATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 246 | 96.09 | 246 | 96.09 |
| $\mathbf{1}$ | 10 | 3.91 | 256 | 100.00 |


| S1BCATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 240 | 93.75 | 240 | 93.75 |
| $\mathbf{1}$ | 16 | 6.25 | 256 | 100.00 |


| FVR1POST_MATCH | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 6 | 2.34 | 6 | 2.34 |
| $\mathbf{1}$ | 250 | 97.66 | 256 | 100.00 |

The FREQ Procedure

| Table of FCATR by S1BCATR |  |  |  |
| :---: | :---: | :---: | :---: |
| FCATR | S1BCATR |  |  |
| Frequency <br> Percent Row Pct Col Pct | 0 | 1 | Total |
| 0 | $\begin{array}{r} 240 \\ 93.75 \\ 97.56 \\ 100.00 \end{array}$ | $\begin{array}{r} 6 \\ 2.34 \\ 2.44 \\ 37.50 \end{array}$ | $\begin{array}{r} 246 \\ 96.09 \end{array}$ |
| 1 | $\begin{array}{r} 0 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$ | $\begin{array}{r} 10 \\ 3.91 \\ 100.00 \\ 62.50 \end{array}$ | $\begin{array}{r} 10 \\ 3.91 \end{array}$ |
| Total | $\begin{array}{r} 240 \\ 93.75 \end{array}$ | $\begin{array}{r} 16 \\ 6.25 \end{array}$ | $\begin{array}{r} 256 \\ 100.00 \end{array}$ |

## Statistics for Table of FCATR by S1BCATR

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 6.0000 |
| DF | 1 |
| $\mathbf{P r}>\mathbf{S}$ | 0.0143 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.7576 |
| ASE | 0.0949 |
| 95\% Lower Conf Limit | 0.5716 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9435 |

Sample Size $=256$

The FREQ Procedure

| S1BCATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{1}$ | 10 | 100.00 | 10 | 100.00 |


| Binomial Proportion for <br> S1BCATR = 1 |  |
| :--- | ---: |
| Proportion (P) | 1.0000 |
| ASE | 0.0000 |
| $\mathbf{9 5 \%}$ Lower Conf Limit | 1.0000 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 1.0000 |
|  |  |
| Exact Conf Limits |  |
| $\mathbf{9 5 \%}$ Lower Conf Limit | 0.6915 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 1.0000 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.1581 |
| $\mathbf{Z}$ | 3.1623 |
| One-sided Pr > Z | 0.0008 |
| Two-sided Pr > \|Z| | 0.0016 |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | $9.766 \mathrm{E}-04$ |
| Two-sided = 2 * One-sided | 0.0020 |

Sample Size $=10$

The FREQ Procedure

| S1BCATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 240 | 97.56 | 240 | 97.56 |
| $\mathbf{1}$ | 6 | 2.44 | 246 | 100.00 |


| Binomial Proportion for <br> S1BCATR = 0 |  |
| :--- | ---: |
| Proportion (P) | 0.9756 |
| ASE | 0.0098 |
| 95\% Lower Conf Limit | 0.9563 |
| 95\% Upper Conf Limit | 0.9949 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.9477 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9910 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0319 |
| $\mathbf{Z}$ | 14.9193 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z| | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | $6.151 \mathrm{E}-14$ |
| Two-sided = 2 * One-sided | $1.230 \mathrm{E}-13$ |

Sample Size $=246$

IN-PERSON VS READER 2 POST-OCT CATARACT DIAGNOSES

The FREQ Procedure

| FCATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 246 | 96.09 | 246 | 96.09 |
| $\mathbf{1}$ | 10 | 3.91 | 256 | 100.00 |


| S2BCATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 242 | 94.53 | 242 | 94.53 |
| $\mathbf{1}$ | 14 | 5.47 | 256 | 100.00 |


| FVR2POST_MATCH | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 6 | 2.34 | 6 | 2.34 |
| $\mathbf{1}$ | 250 | 97.66 | 256 | 100.00 |

The FREQ Procedure

| Table of FCATR by S2BCATR |  |  |  |
| :--- | ---: | ---: | ---: |
| FCATR | S2BCATR |  |  |
| Frequency <br> Percent |  |  |  |
| Row Pct |  |  |  |
| Col Pct |  | 0 | $\mathbf{1}$ |
|  | $\mathbf{0}$ | 241 | Total |
|  | 94.14 | 1.95 | 246 |
|  | 97.97 | 2.03 |  |
|  | 99.59 | 35.71 |  |
|  | $\mathbf{1}$ | 1 | 9 |
|  | 0.39 | 3.52 | 3.91 |
|  | 10.00 | 90.00 |  |
| Total | 0.41 | 64.29 |  |

## Statistics for Table of FCATR by S2BCATR

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 2.6667 |
| DF | 1 |
| Pr > S | 0.1025 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.7381 |
| ASE | 0.1023 |
| 95\% Lower Conf Limit | 0.5375 |
| 95\% Upper Conf Limit | 0.9386 |

Sample Size $=256$

The FREQ Procedure

| S2BCATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 1 | 10.00 | 1 | 10.00 |
| $\mathbf{1}$ | 9 | 90.00 | 10 | 100.00 |


| Binomial Proportion for <br> S2BCATR = 1 |  |
| :--- | :---: |
| Proportion (P) | 0.9000 |
| ASE | 0.0949 |
| 95\% Lower Conf Limit | 0.7141 |
| 95\% Upper Conf Limit | 1.0000 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.5550 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9975 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.1581 |
| Z | 2.5298 |
| One-sided Pr > Z | 0.0057 |
| Two-sided Pr > \|Z| | 0.0114 |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.0107 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.0215 |

Sample Size $=10$

The FREQ Procedure

| S2BCATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 241 | 97.97 | 241 | 97.97 |
| $\mathbf{1}$ | 5 | 2.03 | 246 | 100.00 |


| Binomial Proportion for <br> S2BCATR = 0 |  |
| :--- | ---: |
| Proportion (P) | 0.9797 |
| ASE | 0.0090 |
| 95\% Lower Conf Limit | 0.9620 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9973 |
|  |  |
| Exact Conf Limits |  |
| $\mathbf{9 5 \%}$ Lower Conf Limit | 0.9532 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9934 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0319 |
| $\mathbf{Z}$ | 15.0468 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z| | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | $6.151 \mathrm{E}-14$ |
| Two-sided = 2 * One-sided | $1.230 \mathrm{E}-13$ |

Sample Size $=246$

## IN-PERSON VS READER 1 POST-OCT GLAUCOMA DIAGNOSES

The FREQ Procedure

| FGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| :--- | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 188 | 73.44 | 188 | 73.44 |
| $\mathbf{1}$ | 68 | 26.56 | 256 | 100.00 |


| S1BGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 175 | 68.36 | 175 | 68.36 |
| $\mathbf{1}$ | 81 | 31.64 | 256 | 100.00 |


| FVR1POST_MATCH_GL | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 49 | 19.14 | 49 | 19.14 |
| $\mathbf{1}$ | 207 | 80.86 | 256 | 100.00 |

The FREQ Procedure

| Table of FGLAU by S1BGLAU |  |  |  |
| :--- | ---: | ---: | ---: |
| FGLAU | S1BGLAU |  |  |
| Frequency <br> Percent |  |  |  |
| Row Pct |  |  |  |
| Col Pct | $\mathbf{0}$ | $\mathbf{1}$ | Total |
| $\mathbf{0}$ | 157 | 31 | 188 |
|  | 61.33 | 12.11 | 73.44 |
|  | 83.51 | 16.49 |  |
| $\mathbf{1}$ | 89.71 | 38.27 |  |
|  | 18 | 50 | 68 |
|  | 7.03 | 19.53 | 26.56 |
|  | 26.47 | 73.53 |  |
| Total | 10.29 | 61.73 |  |

## Statistics for Table of FGLAU by S1BGLAU

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 3.4490 |
| DF | 1 |
| Pr > S | 0.0633 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.5376 |
| ASE | 0.0577 |
| 95\% Lower Conf Limit | 0.4246 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.6506 |

Sample Size $=256$

The FREQ Procedure

| S1BGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 18 | 26.47 | 18 | 26.47 |
| $\mathbf{1}$ | 50 | 73.53 | 68 | 100.00 |


| Binomial Proportion for <br> S1BGLAU = 1 |  |
| :--- | ---: |
| Proportion (P) | 0.7353 |
| ASE | 0.0535 |
| 95\% Lower Conf Limit | 0.6304 |
| 95\% Upper Conf Limit | 0.8402 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.6143 |
| 95\% Upper Conf Limit | 0.8350 |


| Test of H0: Proportion $=\mathbf{0 . 5}$ |  |
| :--- | ---: |
| ASE under H0 | 0.0606 |
| $\mathbf{Z}$ | 3.8806 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z| | 0.0001 |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | $6.542 \mathrm{E}-05$ |
| Two-sided $=\mathbf{2} *$ One-sided | $1.308 \mathrm{E}-04$ |

Sample Size $=68$

The FREQ Procedure

| S1BGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 157 | 83.51 | 157 | 83.51 |
| $\mathbf{1}$ | 31 | 16.49 | 188 | 100.00 |


| Binomial Proportion for <br> S1BGLAU = 0 |  |
| :--- | :---: |
| Proportion (P) | 0.8351 |
| ASE | 0.0271 |
| 95\% Lower Conf Limit | 0.7821 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.8882 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.7742 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.8851 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0365 |
| $\mathbf{Z}$ | 9.1895 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z| | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.0000 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.0000 |

Sample Size $=188$

IN-PERSON VS READER 2 POST-OCT GLAUCOMA DIAGNOSES
The FREQ Procedure

| FGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| :--- | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 188 | 73.44 | 188 | 73.44 |
| $\mathbf{1}$ | 68 | 26.56 | 256 | 100.00 |


| S2BGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 198 | 77.34 | 198 | 77.34 |
| $\mathbf{1}$ | 58 | 22.66 | 256 | 100.00 |


| FVR2POST_MATCH_GL | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 76 | 29.69 | 76 | 29.69 |
| $\mathbf{1}$ | 180 | 70.31 | 256 | 100.00 |

## IN-PERSON VS READER 2 POST-OCT GLAUCOMA DIAGNOSES

The FREQ Procedure

| Table of FGLAU by S2BGLAU |  |  |  |
| :--- | ---: | ---: | ---: |
| FGLAU | S2BGLAU |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct |  |  |  |
| $\mathbf{0}$ | 0 |  |  |
|  | 155 | 33 | 188 |
|  | 60.55 | 12.89 | 73.44 |
|  | 82.45 | 17.55 |  |
| $\mathbf{1}$ | 78.28 | 56.90 |  |
|  | 43 | 25 | 68 |
|  | 16.80 | 9.77 | 26.56 |
|  | 63.24 | 36.76 |  |
| Total | 21.72 | 43.10 |  |

## Statistics for Table of FGLAU by S2BGLAU

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 1.3158 |
| DF | 1 |
| Pr > S | 0.2513 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.2016 |
| ASE | 0.0670 |
| 95\% Lower Conf Limit | 0.0703 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.3328 |

$$
\text { Sample Size }=256
$$

The FREQ Procedure

| S2BGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 43 | 63.24 | 43 | 63.24 |
| $\mathbf{1}$ | 25 | 36.76 | 68 | 100.00 |


| Binomial Proportion for <br> S2BGLAU = 1 |  |
| :--- | :---: |
| Proportion (P) | 0.3676 |
| ASE | 0.0585 |
| $\mathbf{9 5 \%}$ Lower Conf Limit | 0.2530 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.4822 |
|  |  |
| Exact Conf Limits |  |
| $\mathbf{9 5 \%}$ Lower Conf Limit | 0.2539 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.4933 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0606 |
| Z | -2.1828 |
| One-sided $\operatorname{Pr}<\quad \mathbf{Z}$ | 0.0145 |
| Two-sided $\operatorname{Pr}>\|\mathbf{Z}\|$ | 0.0290 |
|  |  |
| Exact Test |  |
| One-sided Pr <= P | 0.0192 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.0385 |

Sample Size $=68$

The FREQ Procedure

| S2BGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 155 | 82.45 | 155 | 82.45 |
| $\mathbf{1}$ | 33 | 17.55 | 188 | 100.00 |


| Binomial Proportion for <br> S2BGLAU = 0 |  |
| :--- | :---: |
| Proportion (P) | 0.8245 |
| ASE | 0.0277 |
| $\mathbf{9 5 \%}$ Lower Conf Limit | 0.7701 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.8788 |
|  |  |
| Exact Conf Limits |  |
| $\mathbf{9 5 \%}$ Lower Conf Limit | 0.7624 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.8760 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0365 |
| $\mathbf{Z}$ | 8.8978 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z| | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.0000 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.0000 |

Sample Size $=188$

The FREQ Procedure

| FMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| :--- | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 250 | 97.66 | 250 | 97.66 |
| $\mathbf{1}$ | 6 | 2.34 | 256 | 100.00 |


| S1BMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 251 | 98.05 | 251 | 98.05 |
| $\mathbf{1}$ | 5 | 1.95 | 256 | 100.00 |


| FVR1POST_MATCH_MD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 5 | 1.95 | 5 | 1.95 |
| $\mathbf{1}$ | 251 | 98.05 | 256 | 100.00 |

## IN-PERSON VS READER 1 POST-OCT MACULAR DEGENERATION DIAGNOSES

The FREQ Procedure

| Table of FMD by S1BMD |  |  |  |
| :--- | ---: | ---: | ---: |
| FMD | S1BMD |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct |  |  |  |
| $\mathbf{0}$ | $\mathbf{0}$ |  |  |
|  | 248 | 2 | Total |
|  | 96.88 | 0.78 | 250 |
|  | 99.20 | 0.80 |  |
|  | 98.80 | 40.00 |  |
| $\mathbf{1}$ | 3 | 3 | 6 |
|  | 1.17 | 1.17 | 2.34 |
|  | 50.00 | 50.00 |  |
|  | 1.20 | 60.00 |  |
| Total | 251 | 5 | 256 |
|  | 98.05 | 1.95 | 100.00 |

Statistics for Table of FMD by S1BMD

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 0.2000 |
| DF | 1 |
| $\mathbf{P r}>\mathbf{S}$ | 0.6547 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.5356 |
| ASE | 0.1837 |
| 95\% Lower Conf Limit | 0.1755 |
| 95\% Upper Conf Limit | 0.8956 |

Sample Size $=256$

## The FREQ Procedure

| S1BMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 3 | 50.00 | 3 | 50.00 |
| $\mathbf{1}$ | 3 | 50.00 | 6 | 100.00 |


| Binomial Proportion for <br> S1BMD $=1$ |  |
| :--- | :--- |
| Proportion (P) | 0.5000 |
| ASE | 0.2041 |
| 95\% Lower Conf Limit | 0.0999 |
| 95\% Upper Conf Limit | 0.9001 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.1181 |
| 95\% Upper Conf Limit | 0.8819 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.2041 |
| Z | 0.0000 |
| One-sided $\operatorname{Pr}<\mathbf{Z}$ | 0.5000 |
| Two-sided $\operatorname{Pr}>\|\mathbf{Z}\|$ | 1.0000 |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.6563 |
| Two-sided $=\mathbf{2}$ * One-sided | 1.0000 |

$$
\text { Sample Size }=6
$$

## The FREQ Procedure

| S1BMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 248 | 99.20 | 248 | 99.20 |
| $\mathbf{1}$ | 2 | 0.80 | 250 | 100.00 |


| Binomial Proportion for <br> S1BMD $=0$ |  |
| :--- | :---: |
| Proportion (P) | 0.9920 |
| ASE | 0.0056 |
| 95\% Lower Conf Limit | 0.9810 |
| 95\% Upper Conf Limit | 1.0000 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.9714 |
| 95\% Upper Conf Limit | 0.9990 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0316 |
| Z | 15.5584 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided $\operatorname{Pr}>\|\mathbf{Z}\|$ | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.0000 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.0000 |

Sample Size $=250$

The FREQ Procedure

| FMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| :--- | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 250 | 97.66 | 250 | 97.66 |
| $\mathbf{1}$ | 6 | 2.34 | 256 | 100.00 |


| S2BMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 239 | 93.36 | 239 | 93.36 |
| $\mathbf{1}$ | 17 | 6.64 | 256 | 100.00 |


| FVR2POST_MATCH_MD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 15 | 5.86 | 15 | 5.86 |
| $\mathbf{1}$ | 241 | 94.14 | 256 | 100.00 |

The FREQ Procedure

| Table of FMD by S2BMD |  |  |  |
| :--- | ---: | ---: | ---: |
| FMD | S2BMD |  |  |
| Frequency |  |  |  |
| Percent |  |  |  |
| Row Pct |  |  |  |
| Col Pct | 0 | $\mathbf{1}$ | Total |
| $\mathbf{0}$ | 237 | 13 | 250 |
|  | 92.58 | 5.08 | 97.66 |
|  | 94.80 | 5.20 |  |
|  | 99.16 | 76.47 |  |
| $\mathbf{1}$ | 2 | 4 | 6 |
|  | 0.78 | 1.56 | 2.34 |
|  | 33.33 | 66.67 |  |
| Total | 0.84 | 23.53 |  |

Statistics for Table of FMD by S2BMD

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 8.0667 |
| DF | 1 |
| Pr $>\mathbf{S}$ | 0.0045 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.3244 |
| ASE | 0.1277 |
| 95\% Lower Conf Limit | 0.0741 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.5747 |

Sample Size $=256$

## The FREQ Procedure

| S2BMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 2 | 33.33 | 2 | 33.33 |
| $\mathbf{1}$ | 4 | 66.67 | 6 | 100.00 |


| Binomial Proportion for <br> S2BMD = 1 |  |
| :--- | :---: |
| Proportion (P) | 0.6667 |
| ASE | 0.1925 |
| 95\% Lower Conf Limit | 0.2895 |
| 95\% Upper Conf Limit | 1.0000 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.2228 |
| 95\% Upper Conf Limit | 0.9567 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.2041 |
| Z | 0.8165 |
| One-sided $\operatorname{Pr}>\mathbf{Z}$ | 0.2071 |
| Two-sided $\operatorname{Pr}>\|\mathbf{Z}\|$ | 0.4142 |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.3437 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.6875 |

$$
\text { Sample Size }=6
$$

## The FREQ Procedure

| S2BMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 237 | 94.80 | 237 | 94.80 |
| $\mathbf{1}$ | 13 | 5.20 | 250 | 100.00 |


| Binomial Proportion for <br> S2BMD $=0$ |  |
| :--- | :---: |
| Proportion (P) | 0.9480 |
| ASE | 0.0140 |
| 95\% Lower Conf Limit | 0.9205 |
| 95\% Upper Conf Limit | 0.9755 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.9127 |
| 95\% Upper Conf Limit | 0.9720 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0316 |
| Z | 14.1670 |
| One-sided Pr $>\mathbf{Z}$ | $<.0001$ |
| Two-sided $\operatorname{Pr}>\|\mathbf{Z}\|$ | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.0000 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.0000 |

Sample Size $=250$

The FREQ Procedure

| FRET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 248 | 96.88 | 248 | 96.88 |
| $\mathbf{1}$ | 8 | 3.13 | 256 | 100.00 |


| S1BRET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 247 | 96.48 | 247 | 96.48 |
| $\mathbf{1}$ | 9 | 3.52 | 256 | 100.00 |


| FVR1POST_MATCH_RT | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 5 | 1.95 | 5 | 1.95 |
| $\mathbf{1}$ | 251 | 98.05 | 256 | 100.00 |

The FREQ Procedure

| Table of FRET by S1BRET |  |  |  |
| :--- | ---: | ---: | ---: |
| FRET | S1BRET |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct |  |  |  |
|  |  |  |  |
|  | 0 | 1 | Total |
|  | 0 | 245 | 3 |
|  | 95.70 | 1.17 | 248 |
|  | 98.79 | 1.21 |  |
|  | 99.19 | 33.33 |  |
|  | $\mathbf{1}$ | 2 | 6 |
|  | 0.78 | 2.34 | 3.13 |
|  | 0.81 | 65.00 |  |
| Total | 247 | 9.67 |  |

Statistics for Table of FRET by S1BRET

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 0.2000 |
| DF | 1 |
| $\mathbf{P r}>\mathbf{S}$ | 0.6547 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.6958 |
| ASE | 0.1290 |
| 95\% Lower Conf Limit | 0.4430 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9487 |

Sample Size $=256$

The FREQ Procedure

| S1BRET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 2 | 25.00 | 2 | 25.00 |
| $\mathbf{1}$ | 6 | 75.00 | 8 | 100.00 |


| Binomial Proportion for <br> S1BRET = 1 |  |
| :--- | :---: |
| Proportion (P) | 0.7500 |
| ASE | 0.1531 |
| 95\% Lower Conf Limit | 0.4499 |
| 95\% Upper Conf Limit | 1.0000 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.3491 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9681 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.1768 |
| Z | 1.4142 |
| One-sided Pr > Z | 0.0786 |
| Two-sided Pr > \|Z| | 0.1573 |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.1445 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.2891 |

$$
\text { Sample Size }=8
$$

The FREQ Procedure

| S1BRET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 245 | 98.79 | 245 | 98.79 |
| $\mathbf{1}$ | 3 | 1.21 | 248 | 100.00 |


| Binomial Proportion for <br> S1BRET = 0 |  |
| :--- | :---: |
| Proportion (P) | 0.9879 |
| ASE | 0.0069 |
| 95\% Lower Conf Limit | 0.9743 |
| 95\% Upper Conf Limit | 1.0000 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.9651 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9975 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0318 |
| Z | 15.3670 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z| | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.0000 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.0000 |

Sample Size $=248$

The FREQ Procedure

| FRET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 248 | 96.88 | 248 | 96.88 |
| $\mathbf{1}$ | 8 | 3.13 | 256 | 100.00 |


| S2BRET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 249 | 97.27 | 249 | 97.27 |
| $\mathbf{1}$ | 7 | 2.73 | 256 | 100.00 |


| FVR2POST_MATCH_RT | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 5 | 1.95 | 5 | 1.95 |
| $\mathbf{1}$ | 251 | 98.05 | 256 | 100.00 |

The FREQ Procedure

| Table of FRET by S2BRET |  |  |  |
| :--- | ---: | ---: | ---: |
| FRET | S2BRET |  |  |
| Frequency <br> Percent <br> Row Pct |  |  |  |
| Col Pct |  |  |  |
|  | $\mathbf{0}$ | $\mathbf{1}$ | Total |
|  | $\mathbf{0}$ | 246 | 2 |
|  | 96.09 | 0.78 | 248 |
|  | 99.19 | 0.81 |  |
|  | 98.80 | 28.57 |  |
|  | $\mathbf{1}$ | 3 | 5 |
|  | 1.17 | 1.95 | 3.13 |
|  | 37.50 | 62.50 |  |
|  | 1.20 | 71.43 |  |
| Total | 249 | 7 | 256 |
|  | 97.27 | 2.73 | 100.00 |

Statistics for Table of FRET by S2BRET

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 0.2000 |
| DF | 1 |
| $\mathbf{P r}>\mathbf{S}$ | 0.6547 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.6567 |
| ASE | 0.1437 |
| 95\% Lower Conf Limit | 0.3750 |
| 95\% Upper Conf Limit | 0.9383 |

Sample Size $=256$

The FREQ Procedure

| S2BRET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 3 | 37.50 | 3 | 37.50 |
| $\mathbf{1}$ | 5 | 62.50 | 8 | 100.00 |


| Binomial Proportion for <br> S2BRET = 1 |  |
| :--- | :---: |
| Proportion (P) | 0.6250 |
| ASE | 0.1712 |
| 95\% Lower Conf Limit | 0.2895 |
| 95\% Upper Conf Limit | 0.9605 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.2449 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9148 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.1768 |
| $\mathbf{Z}$ | 0.7071 |
| One-sided Pr > Z | 0.2398 |
| Two-sided $\operatorname{Pr}>\|\mathbf{Z}\|$ | 0.4795 |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.3633 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.7266 |

$$
\text { Sample Size }=8
$$

The FREQ Procedure

| S2BRET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 246 | 99.19 | 246 | 99.19 |
| $\mathbf{1}$ | 2 | 0.81 | 248 | 100.00 |


| Binomial Proportion for <br> S2BRET = 0 |  |
| :--- | :---: |
| Proportion (P) | 0.9919 |
| ASE | 0.0057 |
| 95\% Lower Conf Limit | 0.9808 |
| 95\% Upper Conf Limit | 1.0000 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.9712 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9990 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0318 |
| Z | 15.4940 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z| | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.0000 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.0000 |

Sample Size $=248$

IN-PERSON VS READER 1 POST-OCT DIAGNOSIS REQUIRING REFERRAL
The FREQ Procedure

| FREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 144 | 56.25 | 144 | 56.25 |
| $\mathbf{1}$ | 112 | 43.75 | 256 | 100.00 |


| S1BREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 125 | 48.83 | 125 | 48.83 |
| $\mathbf{1}$ | 131 | 51.17 | 256 | 100.00 |


| FVR1POST_MATCH_RF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 69 | 26.95 | 69 | 26.95 |
| $\mathbf{1}$ | 187 | 73.05 | 256 | 100.00 |

IN-PERSON VS READER 1 POST-OCT DIAGNOSIS REQUIRING REFERRAL
The FREQ Procedure

| Table of FREF by S1BREF |  |  |  |
| :--- | ---: | ---: | ---: |
| FREF | S1BREF |  |  |
| Frequency <br> Percent <br> Row Pct |  |  |  |
| Col Pct |  | 0 |  |
|  | $\mathbf{1}$ | Total |  |
|  | $\mathbf{0}$ | 100 | 44 |
|  | 39.06 | 17.19 | 56.25 |
|  | 69.44 | 30.56 |  |
|  | 80.00 | 33.59 |  |
|  | $\mathbf{1}$ | 25 | 87 |
|  | 9.77 | 33.9 | 43.75 |
|  | 22.32 | 77.68 |  |
|  | 20.00 | 66.41 |  |
| Total | 125 | 131 | 256 |
|  | 48.83 | 51.17 | 100.00 |

Statistics for Table of FREF by S1BREF

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 5.2319 |
| DF | 1 |
| $\mathbf{P r}>\mathbf{S}$ | 0.0222 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.4625 |
| ASE | 0.0547 |
| 95\% Lower Conf Limit | 0.3553 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.5698 |

Sample Size $=256$

The FREQ Procedure

| S1BREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 25 | 22.32 | 25 | 22.32 |
| $\mathbf{1}$ | 87 | 77.68 | 112 | 100.00 |


| Binomial Proportion for <br> S1BREF = 1 |  |
| :--- | :---: |
| Proportion (P) | 0.7768 |
| ASE | 0.0393 |
| 95\% Lower Conf Limit | 0.6997 |
| 95\% Upper Conf Limit | 0.8539 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.6884 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.8500 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0472 |
| Z | 5.8584 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | $1.613 \mathrm{E}-09$ |
| Two-sided $=\mathbf{2}$ * One-sided | $3.225 \mathrm{E}-09$ |

$$
\text { Sample Size }=112
$$

The FREQ Procedure

| S1BREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 100 | 69.44 | 100 | 69.44 |
| $\mathbf{1}$ | 44 | 30.56 | 144 | 100.00 |


| Binomial Proportion for <br> S1BREF $=0$ |  |
| :--- | :---: |
| Proportion (P) | 0.6944 |
| ASE | 0.0384 |
| 95\% Lower Conf Limit | 0.6192 |
| 95\% Upper Conf Limit | 0.7697 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.6123 |
| 95\% Upper Conf Limit | 0.7684 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0417 |
| Z | 4.6667 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | $1.747 \mathrm{E}-06$ |
| Two-sided $=\mathbf{2}$ * One-sided | $3.494 \mathrm{E}-06$ |

$$
\text { Sample Size }=144
$$

IN-PERSON VS READER 2 POST-OCT DIAGNOSES REQUIRING REFERRAL

The FREQ Procedure

| FREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 144 | 56.25 | 144 | 56.25 |
| $\mathbf{1}$ | 112 | 43.75 | 256 | 100.00 |


| S2BREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 93 | 36.33 | 93 | 36.33 |
| $\mathbf{1}$ | 163 | 63.67 | 256 | 100.00 |


| FVR2POST_MATCH_RF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 89 | 34.77 | 89 | 34.77 |
| $\mathbf{1}$ | 167 | 65.23 | 256 | 100.00 |

The FREQ Procedure

| Table of FREF by S2BREF |  |  |  |
| :--- | ---: | ---: | ---: |
| FREF | S2BREF |  |  |
| Frequency <br> Percent <br> Row Pct |  |  |  |
| Col Pct |  |  |  |
|  | $\mathbf{0}$ | $\mathbf{1}$ | Total |
|  | $\mathbf{0}$ | 74 | 70 |
|  | 28.91 | 27.34 | 56.25 |
|  | 51.39 | 48.61 |  |
|  | 79.57 | 42.94 |  |
|  | $\mathbf{1}$ | 19 | 93 |
|  |  | 7.42 | 36.33 |
|  | 16.96 | 83.04 | 43.75 |
|  | 20.43 | 57.06 |  |
| Total | 93 | 163 | 256 |
|  | 36.33 | 63.67 | 100.00 |

Statistics for Table of FREF by S2BREF

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 29.2247 |
| DF | 1 |
| Pr $>$ S | $<.0001$ |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.3277 |
| ASE | 0.0536 |
| 95\% Lower Conf Limit | 0.2226 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.4327 |

Sample Size $=256$

The FREQ Procedure

| S2BREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 19 | 16.96 | 19 | 16.96 |
| $\mathbf{1}$ | 93 | 83.04 | 112 | 100.00 |


| Binomial Proportion for <br> S2BREF = 1 |  |
| :--- | :---: |
| Proportion (P) | 0.8304 |
| ASE | 0.0355 |
| 95\% Lower Conf Limit | 0.7608 |
| 95\% Upper Conf Limit | 0.8999 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.7478 |
| 95\% Upper Conf Limit | 0.8947 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0472 |
| Z | 6.9923 |
| One-sided Pr > Z | $<.0001$ |
| Two-sided Pr > \|Z| | $<.0001$ |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | $2.984 \mathrm{E}-13$ |
| Two-sided = 2 * One-sided | $5.969 \mathrm{E}-13$ |

$$
\text { Sample Size }=112
$$

The FREQ Procedure

| S2BREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 74 | 51.39 | 74 | 51.39 |
| $\mathbf{1}$ | 70 | 48.61 | 144 | 100.00 |


| Binomial Proportion for <br> S2BREF = 0 |  |
| :--- | :---: |
| Proportion (P) | 0.5139 |
| ASE | 0.0417 |
| 95\% Lower Conf Limit | 0.4323 |
| 95\% Upper Conf Limit | 0.5955 |
|  |  |
| Exact Conf Limits |  |
| 95\% Lower Conf Limit | 0.4292 |
| 95\% Upper Conf Limit | 0.5980 |


| Test of H0: Proportion = 0.5 |  |
| :--- | ---: |
| ASE under H0 | 0.0417 |
| Z | 0.3333 |
| One-sided Pr > Z | 0.3694 |
| Two-sided Pr > \|Z| | 0.7389 |
|  |  |
| Exact Test |  |
| One-sided Pr >= P | 0.4013 |
| Two-sided $=\mathbf{2}$ * One-sided | 0.8027 |

Sample Size $=144$

The FREQ Procedure

| S1ACATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 240 | 93.75 | 240 | 93.75 |
| $\mathbf{1}$ | 16 | 6.25 | 256 | 100.00 |


| S2ACATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 241 | 94.14 | 241 | 94.14 |
| $\mathbf{1}$ | 15 | 5.86 | 256 | 100.00 |


| R1VR2PRE_MATCH | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 5 | 1.95 | 5 | 1.95 |
| $\mathbf{1}$ | 251 | 98.05 | 256 | 100.00 |

## READER 1 VS READER 2 PRE-OCT CATARACT DIAGNOSES

The FREQ Procedure

| Table of S1ACATR by S2ACATR |  |  |  |
| :--- | ---: | ---: | ---: |
| S1ACATR | S2ACATR |  |  |
| Frequency <br> Percent <br> Row Pct |  |  |  |
| Col Pct |  |  |  |
|  | $\mathbf{0}$ | $\mathbf{1}$ | Total |
|  | $\mathbf{0}$ | 238 | 2 |
|  | 92.97 | 0.78 | 240 |
|  | 99.17 | 0.83 |  |
|  | 98.76 | 13.33 |  |
|  | $\mathbf{1}$ | 3 | 13 |
|  | 1.17 | 5.08 | 6.25 |
|  | 18.75 | 81.25 |  |
|  | 1.24 | 86.67 |  |
| Total | 241 | 15 | 256 |
|  | 94.14 | 5.86 | 100.00 |

Statistics for Table of S1ACATR by S2ACATR

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 0.2000 |
| DF | 1 |
| Pr > S | 0.6547 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.8283 |
| ASE | 0.0751 |
| 95\% Lower Conf Limit | 0.6811 |
| 95\% Upper Conf Limit | 0.9756 |

Sample Size $=256$

The FREQ Procedure

| S1BCATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 240 | 93.75 | 240 | 93.75 |
| $\mathbf{1}$ | 16 | 6.25 | 256 | 100.00 |


| S2BCATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 242 | 94.53 | 242 | 94.53 |
| $\mathbf{1}$ | 14 | 5.47 | 256 | 100.00 |


| R1VR2POST_MATCH | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 4 | 1.56 | 4 | 1.56 |
| $\mathbf{1}$ | 252 | 98.44 | 256 | 100.00 |

The FREQ Procedure

| Table of S1BCATR by S2BCATR |  |  |  |
| :---: | :---: | :---: | :---: |
| S1BCATR | S2BCATR |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct | 0 | 1 | Total |
| 0 | $\begin{array}{r} 239 \\ 93.36 \\ 99.58 \\ 98.76 \end{array}$ | $\begin{array}{r} 1 \\ 0.39 \\ 0.42 \\ 7.14 \end{array}$ | $\begin{array}{r} 240 \\ 93.75 \end{array}$ |
| 1 | $\begin{array}{r} 3 \\ 1.17 \\ 18.75 \\ 1.24 \end{array}$ | $\begin{array}{r} 13 \\ 5.08 \\ 81.25 \\ 92.86 \end{array}$ | 16 6.25 |
| Total | $\begin{array}{r} 242 \\ 94.53 \end{array}$ | $\begin{array}{r} 14 \\ 5.47 \end{array}$ | $\begin{array}{r} 256 \\ 100.00 \end{array}$ |

Statistics for Table of S1BCATR by S2BCATR

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 1.0000 |
| DF | 1 |
| Pr > S | 0.3173 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.8584 |
| ASE | 0.0696 |
| 95\% Lower Conf Limit | 0.7219 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9949 |

Sample Size $=256$

The FREQ Procedure

| S1AGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 191 | 74.61 | 191 | 74.61 |
| $\mathbf{1}$ | 65 | 25.39 | 256 | 100.00 |


| S2AGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 219 | 85.55 | 219 | 85.55 |
| $\mathbf{1}$ | 37 | 14.45 | 256 | 100.00 |


| R1VR2PRE_MATCH_GL | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 32 | 12.50 | 32 | 12.50 |
| $\mathbf{1}$ | 224 | 87.50 | 256 | 100.00 |

The FREQ Procedure

| Table of S1AGLAU by S2AGLAU |  |  |  |
| :--- | ---: | ---: | ---: |
| S1AGLAU | S2AGLAU |  |  |
| Frequency <br> Percent |  |  |  |
| Row Pct |  |  |  |
| Col Pct |  | 0 |  |
|  | $\mathbf{0}$ | 189 | Total |
|  | 73.83 | 2 | 191 |
|  | 98.95 | 1.05 | 74.61 |
|  | 86.30 | 5.41 |  |
|  | $\mathbf{1}$ | 30 | 35 |
|  | 11.72 | 13.67 | 25.39 |
|  | 46.15 | 53.85 |  |
|  | 13.70 | 94.59 |  |
| Total | 219 | 37 | 256 |
|  | 85.55 | 14.45 | 100.00 |

## Statistics for Table of S1AGLAU by S2AGLAU

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 24.5000 |
| DF | 1 |
| $\mathbf{P r}>\mathbf{S}$ | $<.0001$ |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.6154 |
| ASE | 0.0594 |
| 95\% Lower Conf Limit | 0.4990 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.7319 |

$$
\text { Sample Size }=256
$$

The FREQ Procedure

| S1BGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 175 | 68.36 | 175 | 68.36 |
| $\mathbf{1}$ | 81 | 31.64 | 256 | 100.00 |


| S2BGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 198 | 77.34 | 198 | 77.34 |
| $\mathbf{1}$ | 58 | 22.66 | 256 | 100.00 |


| R1VR2POST_MATCH_GL | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 59 | 23.05 | 59 | 23.05 |
| $\mathbf{1}$ | 197 | 76.95 | 256 | 100.00 |

## READER 1 VS READER 2 POST-OCT GLAUCOMA DIAGNOSES

The FREQ Procedure

| Table of S1BGLAU by S2BGLAU |  |  |  |
| :--- | ---: | ---: | ---: |
| S1BGLAU | S2BGLAU |  |  |
| Frequency <br> Percent <br> Row Pct |  |  |  |
| Col Pct |  |  |  |
|  | $\mathbf{0}$ | 157 | 18 |
|  |  | 18 | Total |
|  |  | 175 |  |
|  | 89.71 | 7.03 | 68.36 |
|  | 79.29 | 31.03 |  |
|  | $\mathbf{1}$ | 41 | 40 |
|  | 15.02 | 15.63 | 31.64 |
|  | 50.62 | 49.38 |  |
| Total | 20.71 | 68.97 |  |
|  | 198 | 58 | 256 |
|  | 77.34 | 22.66 | 100.00 |

## Statistics for Table of S1BGLAU by S2BGLAU

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 8.9661 |
| DF | 1 |
| $\mathbf{P r}>\mathbf{S}$ | 0.0028 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.4232 |
| ASE | 0.0616 |
| 95\% Lower Conf Limit | 0.3024 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.5441 |

Sample Size $=256$

READER 1 VS READER 2 PRE-OCT MACULAR DEGENERATION DIAGNOSES
The FREQ Procedure

| S1AMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 251 | 98.05 | 251 | 98.05 |
| $\mathbf{1}$ | 5 | 1.95 | 256 | 100.00 |


| S2AMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 240 | 93.75 | 240 | 93.75 |
| $\mathbf{1}$ | 16 | 6.25 | 256 | 100.00 |


| R1VR2PRE_MATCH_MD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 11 | 4.30 | 11 | 4.30 |
| $\mathbf{1}$ | 245 | 95.70 | 256 | 100.00 |

The FREQ Procedure

| Table of S1AMD by S2AMD |  |  |  |
| :--- | ---: | ---: | ---: |
| S1AMD | S2AMD |  |  |
| Frequency <br> Percent <br> Row Pct |  |  |  |
| Col Pct |  |  |  |
|  | 0 | $\mathbf{1}$ | Total |
|  | $\mathbf{0}$ | 240 | 11 |
|  | 93.75 | 4.30 | 981 |
|  | 95.62 | 4.38 |  |
|  | 100.00 | 68.75 |  |
|  | $\mathbf{1}$ | 0 | 5 |
|  | 0.00 | 1.95 | 1.95 |
|  | 0.00 | 100.00 |  |
|  | 0.00 | 31.25 |  |
| Total | 240 | 16 | 256 |
|  | 93.75 | 6.25 | 100.00 |

## Statistics for Table of S1AMD by S2AMD

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 11.0000 |
| DF | 1 |
| Pr $>$ S | 0.0009 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.4601 |
| ASE | 0.1340 |
| 95\% Lower Conf Limit | 0.1974 |
| 95\% Upper Conf Limit | 0.7228 |

Sample Size $=256$

The FREQ Procedure

| S1BMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 251 | 98.05 | 251 | 98.05 |
| $\mathbf{1}$ | 5 | 1.95 | 256 | 100.00 |


| S2BMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 239 | 93.36 | 239 | 93.36 |
| $\mathbf{1}$ | 17 | 6.64 | 256 | 100.00 |


| R1VR2POST_MATCH_MD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 12 | 4.69 | 12 | 4.69 |
| $\mathbf{1}$ | 244 | 95.31 | 256 | 100.00 |

The FREQ Procedure

| Table of S1BMD by S2BMD |  |  |  |
| :--- | ---: | ---: | ---: |
| S1BMD | S2BMD |  |  |
| Frequency <br> Percent <br> Row Pct |  |  |  |
| Col Pct |  |  |  |
|  | $\mathbf{0}$ | $\mathbf{1}$ | Total |
|  | $\mathbf{0}$ | 239 | 12 |
|  | 93.36 | 4.69 | 981 |
|  | 95.22 | 4.78 |  |
|  |  | 100.00 | 70.59 |
|  | $\mathbf{1}$ | 0 | 5 |
|  | 0.00 | 1.95 | 1.95 |
|  | 0.00 | 100.00 |  |
|  | 0.00 | 29.41 |  |
| Total | 239 | 17 | 256 |
|  | 93.36 | 6.64 | 100.00 |

## Statistics for Table of S1BMD by S2BMD

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 12.0000 |
| DF | 1 |
| Pr $>$ S | 0.0005 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.4376 |
| ASE | 0.1311 |
| 95\% Lower Conf Limit | 0.1807 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.6944 |

Sample Size $=256$

The FREQ Procedure

| S1ARET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 248 | 96.88 | 248 | 96.88 |
| $\mathbf{1}$ | 8 | 3.13 | 256 | 100.00 |


| S2ARET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 248 | 96.88 | 248 | 96.88 |
| $\mathbf{1}$ | 8 | 3.13 | 256 | 100.00 |


| R1VR2PRE_MATCH_RT | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 6 | 2.34 | 6 | 2.34 |
| $\mathbf{1}$ | 250 | 97.66 | 256 | 100.00 |

The FREQ Procedure

| Table of S1ARET by S2ARET |  |  |  |
| :--- | ---: | ---: | ---: |
| S1ARET | S2ARET |  |  |
| Frequency <br> Percent <br> Row Pct |  |  |  |
| Col Pct |  |  |  |
|  | 0 | $\mathbf{1}$ | Total |
|  | $\mathbf{0}$ | 245 | 3 |
|  | 95.70 | 1.17 | 96.88 |
|  | 98.79 | 1.21 |  |
|  |  | 98.79 | 37.50 |
|  | $\mathbf{1}$ | 3 | 5 |
|  |  | 1.17 | 1.95 |
|  |  | 37.50 | 6.50 |
|  | 1.21 | 62.50 |  |
| Total | 248 | 8 |  |
|  | 96.88 | 3.13 | 100.00 |

Statistics for Table of S1ARET by S2ARET

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 0.0000 |
| DF | 1 |
| Pr >S | 1.0000 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.6129 |
| ASE | 0.1453 |
| 95\% Lower Conf Limit | 0.3282 |
| 95\% Upper Conf Limit | 0.8976 |

Sample Size $=256$

The FREQ Procedure

| S1BRET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 247 | 96.48 | 247 | 96.48 |
| $\mathbf{1}$ | 9 | 3.52 | 256 | 100.00 |


| S2BRET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 249 | 97.27 | 249 | 97.27 |
| $\mathbf{1}$ | 7 | 2.73 | 256 | 100.00 |


| R1VR2POST_MATCH_RT | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 6 | 2.34 | 6 | 2.34 |
| $\mathbf{1}$ | 250 | 97.66 | 256 | 100.00 |

The FREQ Procedure

| Table of S1BRET by S2BRET |  |  |  |
| :--- | ---: | ---: | ---: |
| S1BRET | S2BRET |  |  |
| Frequency <br> Percent <br> Row Pct |  |  |  |
| Col Pct |  |  |  |
|  | $\mathbf{0}$ | $\mathbf{1}$ | Total |
|  | $\mathbf{0}$ | 245 | 2 |
|  | 95.70 | 0.78 | 96.48 |
|  | 99.19 | 0.81 |  |
|  |  | 98.39 | 28.57 |
|  | $\mathbf{1}$ | 4 | 5 |
|  |  | 1.56 | 1.95 |
|  | 44.44 | 55.56 | 3.52 |
|  | 1.61 | 71.43 |  |
| Total | 249 | 7 | 256 |
|  | 97.27 | 2.73 | 100.00 |

Statistics for Table of S1BRET by S2BRET

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 0.6667 |
| DF | 1 |
| Pr > S | 0.4142 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.6131 |
| ASE | 0.1451 |
| 95\% Lower Conf Limit | 0.3288 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.8974 |

Sample Size $=256$

READER 1 VS READER 2 PRE-OCT DIAGNOSES REQUIRING REFERRAL

The FREQ Procedure

| S1AREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 133 | 51.95 | 133 | 51.95 |
| $\mathbf{1}$ | 123 | 48.05 | 256 | 100.00 |


| S2AREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 105 | 41.02 | 105 | 41.02 |
| $\mathbf{1}$ | 151 | 58.98 | 256 | 100.00 |


| R1VR2PRE_MATCH_RF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 86 | 33.59 | 86 | 33.59 |
| $\mathbf{1}$ | 170 | 66.41 | 256 | 100.00 |

READER 1 VS READER 2 PRE-OCT DIAGNOSES REQUIRING REFERRAL

The FREQ Procedure

| Table of S1AREF by S2AREF |  |  |  |
| :---: | :---: | :---: | :---: |
| S1AREF | S2AREF |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct | 0 | 1 | Total |
| 0 | 76 | 57 | 133 |
|  | 29.69 | 22.27 | 51.95 |
|  | 57.14 | 42.86 |  |
|  | 72.38 | 37.75 |  |
| 1 | 29 | 94 | 123 |
|  | 11.33 | 36.72 | 48.05 |
|  | 23.58 | 76.42 |  |
|  | 27.62 | 62.25 |  |
| Total | 105 | 151 | 256 |
|  | 41.02 | 58.98 | 100.00 |

Statistics for Table of S1AREF by S2AREF

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 9.1163 |
| DF | 1 |
| $\operatorname{Pr}>\mathbf{S}$ | 0.0025 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.3328 |
| ASE | 0.0574 |
| 95\% Lower Conf Limit | 0.2204 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.4452 |

Sample Size $=256$

The FREQ Procedure

| S1BREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 125 | 48.83 | 125 | 48.83 |
| $\mathbf{1}$ | 131 | 51.17 | 256 | 100.00 |


| S2BREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 93 | 36.33 | 93 | 36.33 |
| $\mathbf{1}$ | 163 | 63.67 | 256 | 100.00 |


| R1VR2POST_MATCH_RF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 82 | 32.03 | 82 | 32.03 |
| $\mathbf{1}$ | 174 | 67.97 | 256 | 100.00 |

The FREQ Procedure

| Table of S1BREF by S2BREF |  |  |  |
| :--- | ---: | ---: | ---: |
| S1BREF | S2BREF |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct |  |  |  |
|  |  | 0 |  |
|  | $\mathbf{1}$ | 68 | 57 |
|  | 26.56 | 22.27 | Total |
|  | 54.40 | 45.83 |  |
|  | 73.12 | 34.97 |  |
|  | $\mathbf{1}$ | 25 | 106 |
|  | 9.77 | 41.41 | 51.17 |
|  | 19.08 | 80.92 |  |
|  | 26.88 | 65.03 |  |
| Total | 93 | 163 | 256 |
|  | 36.33 | 63.67 | 100.00 |

Statistics for Table of S1 BREF by S2BREF

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 12.4878 |
| DF | 1 |
| Pr >S | 0.0004 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.3552 |
| ASE | 0.0567 |
| 95\% Lower Conf Limit | 0.2441 |
| 95\% Upper Conf Limit | 0.4664 |

Sample Size $=256$

The FREQ Procedure

| S1ACATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 141 | 94.00 | 141 | 94.00 |
| $\mathbf{1}$ | 9 | 6.00 | 150 | 100.00 |


| S3ACATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 145 | 96.67 | 145 | 96.67 |
| $\mathbf{1}$ | 5 | 3.33 | 150 | 100.00 |


| R1T1VT2PRE_MATCH | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 4 | 2.67 | 4 | 2.67 |
| $\mathbf{1}$ | 146 | 97.33 | 150 | 100.00 |

## READER 1: TIME 1 VS TIME 2 CATARACT DIAGNOSES

The FREQ Procedure

| Table of S1ACATR by S3ACATR |  |  |  |
| :--- | ---: | ---: | ---: |
| S1ACATR | S3ACATR |  |  |
| Frequency |  |  |  |
| Percent |  |  |  |
| Row Pct |  |  |  |
| Col Pct | 0 | 1 | Total |
|  | $\mathbf{0}$ | 141 | 0 |
|  | 94.00 | 0.00 | 141 |
|  | 100.00 | 0.00 |  |
|  | 97.24 | 0.00 |  |
|  | 1 | 4 | 5 |
|  | 2.67 | 3.33 | 6.00 |
|  | 44.44 | 55.56 |  |
|  | 2.76 | 100.00 |  |
| Total | 145 | 5 | 150 |
|  | 96.67 | 3.33 | 100.00 |

Statistics for Table of S1ACATR by S3ACATR

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 4.0000 |
| DF | 1 |
| $\mathbf{P r}>\mathbf{S}$ | 0.0455 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.7015 |
| ASE | 0.1405 |
| 95\% Lower Conf Limit | 0.4260 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.9769 |

Sample Size $=150$

READER 2: TIME 1 VS TIME 2 CATARACT DIAGNOSES

The FREQ Procedure

| S2ACATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 142 | 94.67 | 142 | 94.67 |
| $\mathbf{1}$ | 8 | 5.33 | 150 | 100.00 |


| S4ACATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 142 | 94.67 | 142 | 94.67 |
| $\mathbf{1}$ | 8 | 5.33 | 150 | 100.00 |


| R2T1VT2PRE_MATCH | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 2 | 1.33 | 2 | 1.33 |
| $\mathbf{1}$ | 148 | 98.67 | 150 | 100.00 |

## READER 2: TIME 1 VS TIME 2 CATARACT DIAGNOSES

The FREQ Procedure

| Table of S2ACATR by S4ACATR |  |  |  |
| :---: | :---: | :---: | :---: |
| S2ACATR | S4ACATR |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct | 0 | 1 | Total |
| 0 | $\begin{array}{r} 141 \\ 94.00 \\ 99.30 \\ 99.30 \end{array}$ | $\begin{array}{r} 1 \\ 0.67 \\ 0.70 \\ 12.50 \end{array}$ | $\begin{array}{r} 142 \\ 94.67 \end{array}$ |
| 1 | $\begin{array}{r} 1 \\ 0.67 \\ 12.50 \\ 0.70 \end{array}$ | $\begin{array}{r} 7 \\ 4.67 \\ 87.50 \\ 87.50 \end{array}$ | 8 5.33 |
| Total | $\begin{array}{r} 142 \\ 94.67 \end{array}$ | $\begin{array}{r} 8 \\ 5.33 \end{array}$ | $\begin{array}{r} 150 \\ 100.00 \end{array}$ |

Statistics for Table of S2ACATR by S4ACATR

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 0.0000 |
| DF | 1 |
| $\mathbf{P r}>\mathbf{S}$ | 1.0000 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.8680 |
| ASE | 0.0921 |
| 95\% Lower Conf Limit | 0.6875 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 1.0000 |

Sample Size $=150$

READER 1: TIME 1 VS TIME 2 GLAUCOMA DIAGNOSES

The FREQ Procedure

| S1AGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 110 | 73.33 | 110 | 73.33 |
| $\mathbf{1}$ | 40 | 26.67 | 150 | 100.00 |


| S3AGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 122 | 81.33 | 122 | 81.33 |
| $\mathbf{1}$ | 28 | 18.67 | 150 | 100.00 |


| R1T1VT2PRE_MATCH_GL | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 16 | 10.67 | 16 | 10.67 |
| $\mathbf{1}$ | 134 | 89.33 | 150 | 100.00 |

## READER 1: TIME 1 VS TIME 2 GLAUCOMA DIAGNOSES

The FREQ Procedure

| Table of S1AGLAU by S3AGLAU |  |  |  |
| :---: | :---: | :---: | :---: |
| S1AGLAU | S3AGLAU |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct | 0 | 1 | Total |
| 0 | $\begin{array}{r} 108 \\ 72.00 \\ 98.18 \\ 88.52 \end{array}$ | $\begin{array}{r} 2 \\ 1.33 \\ 1.82 \\ 7.14 \end{array}$ | $\begin{array}{r} 110 \\ 73.33 \end{array}$ |
| 1 | $\begin{array}{r} 14 \\ 9.33 \\ 35.00 \\ 11.48 \end{array}$ | $\begin{array}{r} 26 \\ 17.33 \\ 65.00 \\ 92.86 \end{array}$ | $\begin{array}{r} 40 \\ 26.67 \end{array}$ |
| Total | $\begin{array}{r} 122 \\ 81.33 \end{array}$ | $\begin{array}{r} 28 \\ 18.67 \end{array}$ | $\begin{array}{r} 150 \\ 100.00 \end{array}$ |

## Statistics for Table of S1AGLAU by S3AGLAU

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 9.0000 |
| DF | 1 |
| Pr > S | 0.0027 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.6985 |
| ASE | 0.0689 |
| 95\% Lower Conf Limit | 0.5634 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.8336 |

Sample Size $=150$

READER 2: TIME 1 VS TIME 2 GLAUCOMA DIAGNOSES

The FREQ Procedure

| S2AGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 129 | 86.00 | 129 | 86.00 |
| $\mathbf{1}$ | 21 | 14.00 | 150 | 100.00 |


| S4AGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 116 | 77.33 | 116 | 77.33 |
| $\mathbf{1}$ | 34 | 22.67 | 150 | 100.00 |


| R2T1VT2PRE_MATCH_GL | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 15 | 10.00 | 15 | 10.00 |
| $\mathbf{1}$ | 135 | 90.00 | 150 | 100.00 |

## READER 2: TIME 1 VS TIME 2 GLAUCOMA DIAGNOSES

The FREQ Procedure

| Table of S2AGLAU by S4AGLAU |  |  |  |
| :--- | ---: | ---: | ---: |
| S2AGLAU | S4AGLAU |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct |  |  |  |
|  |  |  |  |
|  | $\mathbf{0}$ | 115 |  |
|  | 76.67 | 9.33 | 86.00 |
|  | 89.15 | 10.85 |  |
|  | 99.14 | 41.18 |  |
|  | 1 | 20 | 21 |
|  | 0.67 | 13.33 | 14.00 |
|  | 4.76 | 95.24 |  |
|  | 0.86 | 58.82 |  |
| Total | 116 | 34 | 150 |
|  | 77.33 | 22.67 | 100.00 |

## Statistics for Table of S2AGLAU by S4AGLAU

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 11.2667 |
| DF | 1 |
| Pr > S | 0.0008 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.6702 |
| ASE | 0.0769 |
| 95\% Lower Conf Limit | 0.5194 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.8209 |

Sample Size $=150$

READER 1: TIME 1 VS TIME 2 MACULAR DEGENERATION DIAGNOSES
The FREQ Procedure

| S1AMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 149 | 99.33 | 149 | 99.33 |
| $\mathbf{1}$ | 1 | 0.67 | 150 | 100.00 |


| S3AMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 150 | 100.00 | 150 | 100.00 |


| R1T1VT2PRE_MATCH_MD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 1 | 0.67 | 1 | 0.67 |
| $\mathbf{1}$ | 149 | 99.33 | 150 | 100.00 |

READER 1: TIME 1 VS TIME 2 MACULAR DEGENERATION DIAGNOSES
The FREQ Procedure

| Table of S1AMD by S3AMD |  |  |
| :--- | ---: | ---: |
| S1AMD | S3AMD |  |
| Frequency <br> Percent <br> Row Pct |  |  |
| Col Pct |  |  |
|  | 0 | Total |
|  | 0 | 149 |
|  | 99.33 | 149 |
|  | 100.00 |  |
|  | 99.33 |  |
|  | 1 | 1 |
|  | 0.67 |  |
|  | 100.00 | 1 |
|  | 0.67 |  |
| Total | 150 | 150 |
|  | 100.00 | 100.00 |

The FREQ Procedure

| S2AMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 144 | 96.00 | 144 | 96.00 |
| $\mathbf{1}$ | 6 | 4.00 | 150 | 100.00 |


| S4AMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 146 | 97.33 | 146 | 97.33 |
| $\mathbf{1}$ | 4 | 2.67 | 150 | 100.00 |


| R2T1VT2PRE_MATCH_MD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 4 | 2.67 | 4 | 2.67 |
| $\mathbf{1}$ | 146 | 97.33 | 150 | 100.00 |

The FREQ Procedure

| Table of S2AMD by S4AMD |  |  |  |
| :--- | ---: | ---: | ---: |
| S2AMD | S4AMD |  |  |
| Frequency <br> Percent <br> Row Pct |  |  |  |
| Col Pct |  |  |  |
|  | $\mathbf{0}$ | $\mathbf{1}$ | Total |
|  | $\mathbf{0}$ | 143 | 1 |
|  | 95.33 | 0.67 | 96.00 |
|  | 99.31 | 0.69 |  |
|  | 97.95 | 25.00 |  |
|  | $\mathbf{1}$ | 3 | 3 |
|  | 2.00 | 2.00 | 6 |
|  | 50.00 | 50.00 |  |
|  | 2.05 | 75.00 |  |
| Total | 146 | 4 | 150 |
|  | 97.33 | 2.67 | 100.00 |

## Statistics for Table of S2AMD by S4AMD

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 1.0000 |
| DF | 1 |
| Pr > S | 0.3173 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.5868 |
| ASE | 0.1871 |
| 95\% Lower Conf Limit | 0.2200 |
| 95\% Upper Conf Limit | 0.9535 |

Sample Size $=150$

The FREQ Procedure

| S1ARET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 146 | 97.33 | 146 | 97.33 |
| $\mathbf{1}$ | 4 | 2.67 | 150 | 100.00 |


| S3ARET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 147 | 98.00 | 147 | 98.00 |
| $\mathbf{1}$ | 3 | 2.00 | 150 | 100.00 |


| R1T1VT2PRE_MATCH_RT | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 3 | 2.00 | 3 | 2.00 |
| $\mathbf{1}$ | 147 | 98.00 | 150 | 100.00 |

The FREQ Procedure

| Table of S1ARET by S3ARET |  |  |  |
| :--- | ---: | ---: | ---: |
| S1ARET | S3ARET |  |  |
| Frequency <br> Percent <br> Row Pct |  |  |  |
| Col Pct |  |  |  |
|  | $\mathbf{0}$ | $\mathbf{1}$ | Total |
|  | $\mathbf{0}$ | 145 | 1 |
|  | 96.67 | 0.67 | 97.33 |
|  | 99.32 | 0.68 |  |
|  | 98.64 | 33.33 |  |
|  | $\mathbf{1}$ | 2 | 2 |
|  | 1.33 | 1.33 | 4 |
|  | 50.00 | 50.00 |  |
|  | 1.36 | 66.67 |  |
| Total | 147 | 3 | 150 |
|  | 98.00 | 2.00 | 100.00 |

Statistics for Table of S1ARET by S3ARET

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 0.3333 |
| DF | 1 |
| Pr > S | 0.5637 |


| Simple Kappa Coefficient |  |
| :--- | ---: |
| Kappa | 0.5614 |
| ASE | 0.2270 |
| 95\% Lower Conf Limit | 0.1165 |
| 95\% Upper Conf Limit | 1.0000 |

Sample Size $=150$

The FREQ Procedure

| S2ARET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 147 | 98.00 | 147 | 98.00 |
| $\mathbf{1}$ | 3 | 2.00 | 150 | 100.00 |


| S4ARET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 147 | 98.00 | 147 | 98.00 |
| $\mathbf{1}$ | 3 | 2.00 | 150 | 100.00 |


| R2T1VT2PRE_MATCH_RT | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 2 | 1.33 | 2 | 1.33 |
| $\mathbf{1}$ | 148 | 98.67 | 150 | 100.00 |

The FREQ Procedure

| Table of S2ARET by S4ARET |  |  |  |
| :--- | ---: | ---: | ---: |
| S2ARET | S4ARET |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct |  |  |  |
|  |  | 0 |  |
|  | $\mathbf{0}$ | 146 | 1 |
|  | 97.33 | 0.67 | Total |
|  | 98.00 |  |  |
|  | 99.32 | 0.68 |  |
|  |  | 99.32 | 33.33 |
|  | $\mathbf{1}$ | 1 | 2 |
|  | 0.67 | 1.33 | 2.00 |
|  | 33.33 | 6.67 |  |
| Total | 0.68 | 66.67 |  |

Statistics for Table of S2ARET by S4ARET

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 0.0000 |
| DF | 1 |
| Pr >S | 1.0000 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.6599 |
| ASE | 0.2256 |
| 95\% Lower Conf Limit | 0.2176 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 1.0000 |

Sample Size $=150$

READER 1: TIME 1 VS TIME 2 DIAGNOSES REQUIRING REFERRAL
The FREQ Procedure

| S1AREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 79 | 52.67 | 79 | 52.67 |
| $\mathbf{1}$ | 71 | 47.33 | 150 | 100.00 |


| S3AREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 92 | 61.33 | 92 | 61.33 |
| $\mathbf{1}$ | 58 | 38.67 | 150 | 100.00 |


| R1T1VT2PRE_MATCH_RF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 45 | 30.00 | 45 | 30.00 |
| $\mathbf{1}$ | 105 | 70.00 | 150 | 100.00 |

READER 1: TIME 1 VS TIME 2 DIAGNOSES REQUIRING REFERRAL
The FREQ Procedure

| Table of S1AREF by S3AREF |  |  |  |
| :---: | :---: | :---: | :---: |
| S1AREF | S3AREF |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct | 0 | 1 | Total |
| 0 | $\begin{array}{r} 63 \\ 42.00 \\ 79.75 \\ 68.48 \end{array}$ | $\begin{array}{r} 16 \\ 10.67 \\ 20.25 \\ 27.59 \end{array}$ | $\begin{array}{r} 79 \\ 52.67 \end{array}$ |
| 1 | $\begin{array}{r} 29 \\ 19.33 \\ 40.85 \\ 31.52 \end{array}$ | $\begin{array}{r} 42 \\ 28.00 \\ 59.15 \\ 72.41 \end{array}$ | $\begin{array}{r} 71 \\ 47.33 \end{array}$ |
| Total | $\begin{array}{r} 92 \\ 61.33 \end{array}$ | $\begin{array}{r} 58 \\ 38.67 \end{array}$ | $\begin{array}{r} 150 \\ 100.00 \end{array}$ |

Statistics for Table of S1AREF by S3AREF

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 3.7556 |
| DF | 1 |
| Pr > S | 0.0526 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.3927 |
| ASE | 0.0743 |
| 95\% Lower Conf Limit | 0.2469 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.5384 |

Sample Size $=150$

READER 2: TIME 1 VS TIME 2 DIAGNOSES REQUIRING REFERRAL
The FREQ Procedure

| S2AREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 66 | 44.00 | 66 | 44.00 |
| $\mathbf{1}$ | 84 | 56.00 | 150 | 100.00 |


| S4AREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 61 | 40.67 | 61 | 40.67 |
| $\mathbf{1}$ | 89 | 59.33 | 150 | 100.00 |


| R2T1VT2PRE_MATCH_RF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 23 | 15.33 | 23 | 15.33 |
| $\mathbf{1}$ | 127 | 84.67 | 150 | 100.00 |

READER 2: TIME 1 VS TIME 2 DIAGNOSES REQUIRING REFERRAL
The FREQ Procedure

| Table of S2AREF by S4AREF |  |  |  |
| :--- | ---: | ---: | ---: |
| S2AREF | S4AREF |  |  |
| Frequency <br> Percent <br> Row Pct |  |  |  |
| Col Pct |  |  |  |
|  | $\mathbf{0}$ | $\mathbf{1}$ | Total |
|  | $\mathbf{0}$ | 52 | 14 |
|  | 34.67 | 9.33 | 44.00 |
|  | 78.79 | 21.21 |  |
|  | 85.25 | 15.73 |  |
|  | 9 | 75 | 84 |
|  | 6.00 | 50.00 | 56.00 |
|  | 10.71 | 89.29 |  |
|  | 14.75 | 84.27 |  |
| Total | 61 | 89 | 150 |
|  | 40.67 | 59.33 | 100.00 |

Statistics for Table of S2AREF by S4AREF

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 1.0870 |
| DF | 1 |
| Pr > S | 0.2971 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.6863 |
| ASE | 0.0600 |
| 95\% Lower Conf Limit | 0.5688 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.8038 |

Sample Size $=150$

READER 1: TIME 1 VS TIME 2 CATARACT DIAGNOSES (POST-OCT)
The FREQ Procedure

| S1BCATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 141 | 94.00 | 141 | 94.00 |
| $\mathbf{1}$ | 9 | 6.00 | 150 | 100.00 |


| S3BCATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 146 | 97.33 | 146 | 97.33 |
| $\mathbf{1}$ | 4 | 2.67 | 150 | 100.00 |


| R1T1VT2POST_MATCH | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 5 | 3.33 | 5 | 3.33 |
| $\mathbf{1}$ | 145 | 96.67 | 150 | 100.00 |

The FREQ Procedure

| Table of S1BCATR by S3BCATR |  |  |  |
| :---: | :---: | :---: | :---: |
| S1BCATR | S3BCATR |  |  |
| Frequency <br> Percent Row Pct Col Pct | 0 | 1 | Total |
| 0 | $\begin{array}{r} 141 \\ 94.00 \\ 100.00 \\ 96.58 \end{array}$ | $\begin{array}{r} 0 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$ | $\begin{array}{r} 141 \\ 94.00 \end{array}$ |
| 1 | $\begin{array}{r} 5 \\ 3.33 \\ 55.56 \\ 3.42 \end{array}$ | $\begin{array}{r} 4 \\ 2.67 \\ 44.44 \\ 100.00 \end{array}$ | 9 6.00 |
| Total | $\begin{array}{r} 146 \\ 97.33 \end{array}$ | $\begin{array}{r} 4 \\ 2.67 \end{array}$ | $\begin{array}{r} 150 \\ 100.00 \end{array}$ |

Statistics for Table of S1BCATR by S3BCATR

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 5.0000 |
| DF | 1 |
| Pr > S | 0.0253 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.6006 |
| ASE | 0.1610 |
| 95\% Lower Conf Limit | 0.2851 |
| 95\% Upper Conf Limit | 0.9162 |

Sample Size $=150$

READER 2: TIME 1 VS TIME 2 CATARACT DIAGNOSES (POST-OCT)
The FREQ Procedure

| S2BCATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 143 | 95.33 | 143 | 95.33 |
| $\mathbf{1}$ | 7 | 4.67 | 150 | 100.00 |


| S4BCATR | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 142 | 94.67 | 142 | 94.67 |
| $\mathbf{1}$ | 8 | 5.33 | 150 | 100.00 |


| R2T1VT2POST_MATCH | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 1 | 0.67 | 1 | 0.67 |
| $\mathbf{1}$ | 149 | 99.33 | 150 | 100.00 |

The FREQ Procedure

| Table of S2BCATR by S4BCATR |  |  |  |
| :---: | :---: | :---: | :---: |
| S2BCATR | S4BCATR |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct | 0 | 1 | Total |
| 0 | $\begin{array}{r} 142 \\ 94.67 \\ 99.30 \\ 100.00 \end{array}$ | $\begin{array}{r} 1 \\ 0.67 \\ 0.70 \\ 12.50 \end{array}$ | $\begin{array}{r} 143 \\ 95.33 \end{array}$ |
| 1 | $\begin{array}{r} 0 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$ | $\begin{array}{r} 7 \\ 4.67 \\ 100.00 \\ 87.50 \end{array}$ | 7 4.67 |
| Total | $\begin{array}{r} 142 \\ 94.67 \end{array}$ | $\begin{array}{r} 8 \\ 5.33 \end{array}$ | $\begin{array}{r} 150 \\ 100.00 \end{array}$ |

## Statistics for Table of S2BCATR by S4BCATR

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 1.0000 |
| DF | 1 |
| Pr > S | 0.3173 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.9298 |
| ASE | 0.0698 |
| 95\% Lower Conf Limit | 0.7931 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 1.0000 |

Sample Size $=150$

READER 1: TIME 1 VS TIME 2 GLAUCOMA DIAGNOSES (POST-OCT)

The FREQ Procedure

| S1BGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 100 | 66.67 | 100 | 66.67 |
| $\mathbf{1}$ | 50 | 33.33 | 150 | 100.00 |


| S3BGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 110 | 73.33 | 110 | 73.33 |
| $\mathbf{1}$ | 40 | 26.67 | 150 | 100.00 |


| R1T1VT2POST_MATCH_GL | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 18 | 12.00 | 18 | 12.00 |
| $\mathbf{1}$ | 132 | 88.00 | 150 | 100.00 |

READER 1: TIME 1 VS TIME 2 GLAUCOMA DIAGNOSES (POST-OCT)
The FREQ Procedure

| Table of S1BGLAU by S3BGLAU |  |  |  |
| :---: | :---: | :---: | :---: |
| S1BGLAU | S3BGLAU |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct | 0 | 1 | Total |
| 0 | $\begin{array}{r} 96 \\ 64.00 \\ 96.00 \\ 87.27 \end{array}$ | $\begin{array}{r} 4 \\ 2.67 \\ 4.00 \\ 10.00 \end{array}$ | $\begin{array}{r} 100 \\ 66.67 \end{array}$ |
| 1 | $\begin{array}{r} 14 \\ 9.33 \\ 28.00 \\ 12.73 \end{array}$ | $\begin{array}{r} 36 \\ 24.00 \\ 72.00 \\ 90.00 \end{array}$ | $\begin{array}{r} 50 \\ 33.33 \end{array}$ |
| Total | $\begin{array}{r} 110 \\ 73.33 \end{array}$ | $\begin{array}{r} 40 \\ 26.67 \end{array}$ | $\begin{array}{r} 150 \\ 100.00 \end{array}$ |

## Statistics for Table of S1BGLAU by S3BGLAU

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 5.5556 |
| DF | 1 |
| Pr > S | 0.0184 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.7158 |
| ASE | 0.0617 |
| 95\% Lower Conf Limit | 0.5948 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.8368 |

Sample Size $=150$

READER 2: TIME 1 VS TIME 2 GLAUCOMA DIAGNOSES (POST-OCT)

The FREQ Procedure

| S2BGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 118 | 78.67 | 118 | 78.67 |
| $\mathbf{1}$ | 32 | 21.33 | 150 | 100.00 |


| S4BGLAU | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 112 | 74.67 | 112 | 74.67 |
| $\mathbf{1}$ | 38 | 25.33 | 150 | 100.00 |


| R2T1VT2POST_MATCH_GL | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 18 | 12.00 | 18 | 12.00 |
| $\mathbf{1}$ | 132 | 88.00 | 150 | 100.00 |

The FREQ Procedure

| Table of S2BGLAU by S4BGLAU |  |  |  |
| :--- | ---: | ---: | ---: |
| S2BGLAU | S4BGLAU |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct |  |  |  |
|  |  |  |  |
|  | $\mathbf{0}$ | 106 |  |
|  | 70.67 | 8.00 | 78.67 |
|  | 89.83 | 10.17 |  |
|  | 94.64 | 31.58 |  |
|  | $\mathbf{1}$ | 6 | 26 |
|  | 4.00 | 17.33 | 21.33 |
|  | 18.75 | 81.25 |  |
|  | 5.36 | 68.42 |  |
|  | 112 | 38 | 150 |
|  | 74.67 | 25.33 | 100.00 |

## Statistics for Table of S2BGLAU by S4BGLAU

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 2.0000 |
| DF | 1 |
| $\mathbf{P r}>\mathbf{S}$ | 0.1573 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.6653 |
| ASE | 0.0723 |
| 95\% Lower Conf Limit | 0.5236 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.8071 |

$$
\text { Sample Size }=150
$$

READER 1: TIME 1 VS TIME 2 MACULAR DEGENERATION DIAGNOSES (POST-OCT)
The FREQ Procedure

| S1BMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 149 | 99.33 | 149 | 99.33 |
| $\mathbf{1}$ | 1 | 0.67 | 150 | 100.00 |


| S3BMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 150 | 100.00 | 150 | 100.00 |


| R1T1VT2POST_MATCH_MD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 1 | 0.67 | 1 | 0.67 |
| $\mathbf{1}$ | 149 | 99.33 | 150 | 100.00 |

READER 1: TIME 1 VS TIME 2 MACULAR DEGENERATION DIAGNOSES (POST-OCT)

The FREQ Procedure

| Table of S1BMD by S3BMD |  |  |
| :---: | :---: | :---: |
| S1BMD | S3BMD |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct | 0 | Total |
| 0 | $\begin{array}{r} 149 \\ 99.33 \\ 100.00 \\ 99.33 \end{array}$ | $\begin{array}{r} 149 \\ 99.33 \end{array}$ |
| 1 | $\begin{array}{r} 1 \\ 0.67 \\ 100.00 \\ 0.67 \end{array}$ | 1 0.67 |
| Total | $\begin{array}{r} 150 \\ 100.00 \end{array}$ | $\begin{array}{r} 150 \\ 100.00 \end{array}$ |

READER 2: TIME 1 VS TIME 2 MACULAR DEGENERATION DIAGNOSES (POST-OCT)
The FREQ Procedure

| S2BMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 144 | 96.00 | 144 | 96.00 |
| $\mathbf{1}$ | 6 | 4.00 | 150 | 100.00 |


| S4BMD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 145 | 96.67 | 145 | 96.67 |
| $\mathbf{1}$ | 5 | 3.33 | 150 | 100.00 |


| R2T1VT2POST_MATCH_MD | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 3 | 2.00 | 3 | 2.00 |
| $\mathbf{1}$ | 147 | 98.00 | 150 | 100.00 |

The FREQ Procedure

| Table of S2BMD by S4BMD |  |  |  |
| :--- | ---: | ---: | ---: |
| S2BMD | S4BMD |  |  |
| Frequency <br> Percent <br> Row Pct |  |  |  |
| Col Pct |  |  |  |
|  | $\mathbf{0}$ | $\mathbf{1}$ | Total |
|  | $\mathbf{0}$ | 143 | 1 |
|  | 95.33 | 0.67 | 96.00 |
|  | 99.31 | 0.69 |  |
|  | 98.62 | 20.00 |  |
|  | $\mathbf{1}$ | 2 | 4 |
|  | 1.33 | 2.67 | 4.00 |
|  | 33.33 | 66.67 |  |
|  | 1.38 | 80.00 |  |
| Total | 145 | 5 | 150 |
|  | 96.67 | 3.33 | 100.00 |

## Statistics for Table of S2BMD by S4BMD

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 0.3333 |
| DF | 1 |
| Pr > S | 0.5637 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.7170 |
| ASE | 0.1559 |
| 95\% Lower Conf Limit | 0.4114 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 1.0000 |

$$
\text { Sample Size }=150
$$

READER 1: TIME 1 VS TIME 2 DIABETIC RETINOPATHY DIAGNOSES (POST-OCT)
The FREQ Procedure

| S1BRET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 145 | 96.67 | 145 | 96.67 |
| $\mathbf{1}$ | 5 | 3.33 | 150 | 100.00 |


| S3BRET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 147 | 98.00 | 147 | 98.00 |
| $\mathbf{1}$ | 3 | 2.00 | 150 | 100.00 |


| R1T1VT2POST_MATCH_RT | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 4 | 2.67 | 4 | 2.67 |
| $\mathbf{1}$ | 146 | 97.33 | 150 | 100.00 |

The FREQ Procedure

| Table of S1BRET by S3BRET |  |  |  |
| :--- | ---: | ---: | ---: |
| S1BRET | S3BRET |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct |  |  |  |
|  |  | 0 |  |
|  | $\mathbf{0}$ | 144 | 1 |
|  | 96.00 | 0.67 | Total |
|  | 99.31 | 0.69 |  |
|  | 97.96 | 33.33 |  |
|  | $\mathbf{1}$ | 3 | 2 |
|  | 2.00 | 1.33 | 3.33 |
|  | 60.00 | 40.00 |  |
|  | 2.04 | 66.67 |  |
| Total | 147 | 3 | 150 |
|  | 98.00 | 2.00 | 100.00 |

Statistics for Table of S1BRET by S3BRET

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 1.0000 |
| DF | 1 |
| $\mathbf{P r}>\mathbf{S}$ | 0.3173 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.4872 |
| ASE | 0.2195 |
| 95\% Lower Conf Limit | 0.0570 |
| 95\% Upper Conf Limit | 0.9173 |

Sample Size $=150$

READER 2: TIME 1 VS TIME 2 DIABETIC RETINOPATHY DIAGNOSES (POST-OCT)
The FREQ Procedure

| S2BRET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 148 | 98.67 | 148 | 98.67 |
| $\mathbf{1}$ | 2 | 1.33 | 150 | 100.00 |


| S4BRET | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 147 | 98.00 | 147 | 98.00 |
| $\mathbf{1}$ | 3 | 2.00 | 150 | 100.00 |


| R2T1VT2POST_MATCH_RT | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 1 | 0.67 | 1 | 0.67 |
| $\mathbf{1}$ | 149 | 99.33 | 150 | 100.00 |

The FREQ Procedure

| Table of S2BRET by S4BRET |  |  |  |
| :--- | ---: | ---: | ---: |
| S2BRET | S4BRET |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct |  |  |  |
|  |  | 0 |  |
|  | $\mathbf{0}$ | 147 | 1 |
|  | 98.00 | Total |  |
|  | 9.67 | 148 |  |
|  | 99.32 | 0.68 |  |
|  | 100.00 | 33.33 |  |
|  | $\mathbf{1}$ | 0 | 2 |
|  | 0.00 | 1.33 | 1.33 |
|  | 0.00 | 10.00 |  |
|  | 0.00 | 66.67 |  |
| Total | 147 | 3 | 150 |
|  | 98.00 | 2.00 | 100.00 |

Statistics for Table of S2BRET by S4BRET

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 1.0000 |
| DF | 1 |
| $\mathbf{P r}>\mathbf{S}$ | 0.3173 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.7967 |
| ASE | 0.1983 |
| 95\% Lower Conf Limit | 0.4080 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 1.0000 |

Sample Size $=150$

READER 1: TIME 1 VS TIME 2 DIAGNOSES REQUIRING REFERRAL (POST-OCT)
The FREQ Procedure

| S1BREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 70 | 46.67 | 70 | 46.67 |
| $\mathbf{1}$ | 80 | 53.33 | 150 | 100.00 |


| S3BREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 82 | 54.67 | 82 | 54.67 |
| $\mathbf{1}$ | 68 | 45.33 | 150 | 100.00 |


| R1T1VT2POST_MATCH_RF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 40 | 26.67 | 40 | 26.67 |
| $\mathbf{1}$ | 110 | 73.33 | 150 | 100.00 |

READER 1: TIME 1 VS TIME 2 DIAGNOSES REQUIRING REFERRAL (POST-OCT)
The FREQ Procedure

| Table of S1BREF by S3BREF |  |  |  |
| :---: | :---: | :---: | :---: |
| S1BREF | S3BREF |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct | 0 | 1 | Total |
| 0 | $\begin{array}{r} 56 \\ 37.33 \\ 80.00 \\ 68.29 \end{array}$ | $\begin{array}{r} 14 \\ 9.33 \\ 20.00 \\ 20.59 \end{array}$ | 70 46.67 |
| 1 | $\begin{array}{r} 26 \\ 17.33 \\ 32.50 \\ 31.71 \end{array}$ | $\begin{array}{r} 54 \\ 36.00 \\ 67.50 \\ 79.41 \end{array}$ | 80 53.33 |
| Total | $\begin{array}{r} 82 \\ 54.67 \end{array}$ | $\begin{array}{r} 68 \\ 45.33 \end{array}$ | $\begin{array}{r} 150 \\ 100.00 \end{array}$ |

Statistics for Table of S1BREF by S3BREF

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 3.6000 |
| DF | 1 |
| Pr >S | 0.0578 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.4700 |
| ASE | 0.0709 |
| 95\% Lower Conf Limit | 0.3309 |
| $\mathbf{9 5 \%}$ Upper Conf Limit | 0.6090 |

Sample Size $=150$

READER 2: TIME 1 VS TIME 2 DIAGNOSES REQUIRING REFERRAL (POST-OCT)
The FREQ Procedure

| S2BREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 54 | 36.00 | 54 | 36.00 |
| $\mathbf{1}$ | 96 | 64.00 | 150 | 100.00 |


| S4BREF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 55 | 36.67 | 55 | 36.67 |
| $\mathbf{1}$ | 95 | 63.33 | 150 | 100.00 |


| R2T1VT2POST_MATCH_RF | Frequency | Percent | Cumulative <br> Frequency | Cumulative <br> Percent |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 33 | 22.00 | 33 | 22.00 |
| $\mathbf{1}$ | 117 | 78.00 | 150 | 100.00 |

READER 2: TIME 1 VS TIME 2 DIAGNOSES REQUIRING REFERRAL (POST-OCT)
The FREQ Procedure

| Table of S2BREF by S4BREF |  |  |  |
| :---: | :---: | :---: | :---: |
| S2BREF | S4BREF |  |  |
| Frequency <br> Percent <br> Row Pct <br> Col Pct | 0 | 1 | Total |
| 0 | 38 | 16 | 54 |
|  | 25.33 | 10.67 | 36.00 |
|  | 70.37 | 29.63 |  |
|  | 69.09 | 16.84 |  |
| 1 | 17 | 79 | 96 |
|  | 11.33 | 52.67 | 64.00 |
|  | 17.71 | 82.29 |  |
|  | 30.91 | 83.16 |  |
| Total | 55 | 95 | 150 |
|  | 36.67 | 63.33 | 100.00 |

Statistics for Table of S2BREF by S4BREF

| McNemar's Test |  |
| :--- | ---: |
| Statistic (S) | 0.0303 |
| DF | 1 |
| Pr > S | 0.8618 |


| Simple Kappa Coefficient |  |
| :--- | :---: |
| Kappa | 0.5245 |
| ASE | 0.0723 |
| 95\% Lower Conf Limit | 0.3828 |
| 95\% Upper Conf Limit | 0.6662 |

Sample Size $=150$

Dear Editor of Ophthalmology:
I, Steven Urken MD, hereby provide permission and approval for Dr. April Maa and her co-authors to mention me by name in the Acknowledgement Section of her manuscript titled, "Diagnostic Accuracy of Technology-based Eye Care Services (TECS): The TECS Compare Trial Part I" Manuscript \# OPHTH 2019_471.


Ophthalmology Chief
Atlanta VA Healthcare System

Dear Editor of Ophthalmology:
I, Deirdre Dixon, hereby provide permission and approval for Dr. April Maa and her coauthors to mention me by name in the Acknowledgement Section of her manuscript titled, "Diagnostic Accuracy of Technology-based Eye Care Services (TECS): The TECS Compare Trial Part I" Manuscript \# OPHTH 2019_471.

Thank you,


Deirdre Dixon, CCRC
Research Coordinator
Regional Telehealth Services, VISN 7

